Skip to main content

Determinants of Hypertensive Renal Disease and Its Progression

  • Chapter
  • First Online:
Disorders of Blood Pressure Regulation

Abstract

The susceptibility to hypertension-induced renal damage (HIRD) varies greatly within the hypertensive population. With the exception of certain genetically susceptible groups such as African-Americans, the vast majority of individuals with essential hypertension (HTN) are quite resistant to the development of significant HIRD. This is because the normal preglomerular renal autoregulatory mechanisms prevent the transmission of systemic HTN to glomerular capillaries protecting them from barotrauma. Significant HIRD only develops when HTN becomes very severe and exceeds this protective capacity. By contrast, these protective autoregulatory mechanisms are impaired in individuals with significant CKD including those with diabetic nephropathy. This impairment allows an enhanced glomerular transmission of even moderate HTN and results in progressive glomerular barotrauma and glomerulosclerosis (GS). Studies in renal mass reduction (RMR) models of CKD have confirmed the quantitative importance of autoregulatory impairment and physical glomerular BP transmission as the predominant determinant of HIRD severity and its rate of progression. Recent data indicate that the loss of NO-mediated efferent vasodilation may independently contribute to the pathogenesis of HIRD in states of endothelial dysfunction. The CKD-associated glomerular capillary hypertrophy may additionally increase HIRD susceptibility due to a reduction in podocyte density and the ability to withstand mechanical stress. Although the renin-angiotensin system (RAS) is widely believed to promote HIRD through BP-independent fibrogenic pathways, most of the benefits of RAS blockade are attributable to BP lowering when BP has been measured adequately. Nevertheless, RAS blockade combined with adequate diuretic therapy offers the most effective strategy to control BP and thereby CKD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. U.S. Renal Data system (USRDS) (2012) 2012 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD

    Google Scholar 

  2. Klag MJ, Whelton PK, Randall BL et al (1997) End-stage renal disease in African-American and white men: 16-year MRFIT findings. JAMA 277:1293–1298

    Article  CAS  PubMed  Google Scholar 

  3. Hsu CY, McCulloch CE, Darbinian J et al (2005) Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med 165:923–928

    Article  PubMed  Google Scholar 

  4. Genovese G, Friedman DJ, Ross MD et al (2010) Association of trypanolytic apoL1 variants with kidney disease in African-Americans. Science 329:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freedman BI, Sedor JR (2008) Hypertenison-associated kidney disease: perhaps no more. J Am Soc Nephrol 19:2047–2051

    Article  PubMed  Google Scholar 

  6. Kopp JB (2013) Rethinking hypertensive kidney disease: arterionephrosclerosis as a genetic, metabolic, and inflammatory disorder. Curr Opin Nephrol Hypertens 22:266–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byrom FB (1969) The hypertensive vascular crisis: an experimental study [Heinemann monograph]. William Heinemann Medical Books, London

    Google Scholar 

  8. Bidani AK, Griffin KA (2004) Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension 44:595–601

    Article  CAS  PubMed  Google Scholar 

  9. Olson JL (2007) Renal disease caused by hypertension. In: Jennette JC, Olson JL, Schwartz MM, Silva FG (eds) Heptinstall's pathology of the kidney, vol II, Sixth edn. Lippincott Williams & Wilkins, Philadelphia, pp 937–990

    Google Scholar 

  10. Bakris GL, Williams M, Dworkin Elliott WJ et al (2000) Preserving renal function in adults with hypertension and diabetes: a consensus approach. Am J Kidney Dis 36:646–661

    Google Scholar 

  11. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, de Zeeuw D, Shahinfar S, Toto R, Levey AS, for the AIPRD Study Group (2003) Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition. A patient-level meta-analysis. Ann Intern Med 139:244–252

    Article  CAS  PubMed  Google Scholar 

  12. Griffin KA, Bidani AK (2006) Progression of renal disease: the renoprotective specificity of renin angiotensin system blockade (invited review). Clin J Am Soc Nephrol 1:1054–1065

    Article  PubMed  Google Scholar 

  13. Lv J, Ehte P, Sarnak MJ et al (2013) Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ 185:949–957

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA (2013) Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens 22:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill GS (1970) Studies on the pathogenesis of hypertensive vascular disease. Effect of high-pressure intra-arterial injections in rats. Circ Res 27:657–668

    Google Scholar 

  16. Bohle A, Wehrmann M, Greschniok A, Junghans R (1998) Renal morphology in essential hypertension: analysis of 1177 unselected cases. Kidney Int 54(Suppl 67):S205–S206

    Article  Google Scholar 

  17. Loutzenhiser GKA, Williamson G, Bidani AK (2006) Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol 290:R1153–R1167

    CAS  Google Scholar 

  18. Bidani AK, Griffin KA, Williamson G et al (2009) Protective importance of the myogenic response in the renal circulation. Hypertension 54:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carlstrom M, Wilcox CS, Arendshorst WJ (2015) Renal autoregulation in health and disease. Physiol Rev 95:405–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abu-Amarah I, Bidani AK, Hacioglu R et al (2005) Differential effects of salt on renal hemodynamics and potential pressure transmission in stroke-prone and stroke-resistant spontaneously hypertensive rats. Am J Physiol Renal Physiol 289:F305–F313

    Article  CAS  PubMed  Google Scholar 

  21. Griffin KA, Abu-Amarah I, Picken M, Bidani AK (2003) Renoprotection by ACE inhibition or aldosterone blockade is blood pressure dependent. Hypertension 41:201–206

    Article  CAS  PubMed  Google Scholar 

  22. Griffin KA, Polichnowski A, Litbarg N et al (2014) Critical blood pressure threshold dependence of hypertensive injury and repair in a malignant nephrosclerosis model. Hypertension 64(4):801–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bidani AK, Schwartz MM, Lewis EJ (1987) Renal autoregulation and vulnerability to hypertensive injury in remnant kidney. Am J Physiol 252:1003–1010

    Google Scholar 

  24. Bidani AK, Hacioglu R, Abu-Amarah I et al (2003) ‘Step’ vs ‘dynamic’ autoregulation: implications for susceptibility to hypertensive injury. Am J Physiol 285:F113–F120

    Google Scholar 

  25. Bidani AK, Griffin KA, Picken M, Lansky DM (1993) Continuous telemetric blood pressure monitoring and glomerular injury in the rat remnant kidney model. Am J Physiol 265(3 Pt 2):F391–F398

    CAS  PubMed  Google Scholar 

  26. Hostetter TH, Olson JL, Rennke HG et al (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241:F85–F93

    CAS  PubMed  Google Scholar 

  27. Anderson S, Rennke H, Brenner BM (1986) Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 77:1993–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777

    Article  CAS  PubMed  Google Scholar 

  29. Griffin KA, Kramer H, Bidani AK (2008) Adverse renal consequences of obesity. Am J Physiol 94:F685–F696

    Google Scholar 

  30. Bidani AK, Mitchell KD, Schwartz MM et al (1990) Absence of progressive glomerular injury in a normotensive rat remnant kidney model. Kidney Int 38:28–38

    Article  CAS  PubMed  Google Scholar 

  31. Griffin KA, Picken MM, Churchill M et al (2000) Functional and structural correlates of glomerulosclerosis after renal mass reduction in the rat. J Am Soc Nephrol 11:497–506

    CAS  PubMed  Google Scholar 

  32. Baylis C, Wilson CB (1989) Sex and the single kidney. Am J Kidney Dis 13:290–298

    Article  CAS  PubMed  Google Scholar 

  33. Lenihan CR, Busque S, Derby G et al (2015) Longitudinal study of living kidney donor glomerular dynamics after nephrectomy. J Clin Invest 125:1311–1318

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bidani AK, Picken MM, Bakris G, Griffin KA (2000) Lack of evidence of BP independent protection by renin-angiotensin system blockade after renal ablation. Kidney Int 57:1651–1661

    Article  CAS  PubMed  Google Scholar 

  35. Griffin KA, Picken MM, Bidani AK (1995) Deleterious effects of calcium channel blockade on pressure transmission and glomerular injury in rat remnant kidneys. J Clin Invest 96:793–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Griffin KA, Picken M, Bidani AK (1994) Radiotelemetric BP monitoring, antihypertensives and glomeruloprotection in remnant kidney model. Kidney Int 46:1010–1018

    Article  CAS  PubMed  Google Scholar 

  37. Griffin KA, Picken M, Giobbie-Hurder A, Bidani AK (2003) Low protein diet mediated renoprotection in remnant kidneys: renal autoregulatory vs hypertrophic mechanisms. Kidney Int 63:607–616

    Article  PubMed  Google Scholar 

  38. Griffin KA, Picken MM, Bidani AK (2004) Blood pressure lability and glomerulosclerosis after normotensive 5/6 renal mass reduction in the rat. Kidney Int 65:209–218

    Article  PubMed  Google Scholar 

  39. Bidani AK, Griffin KA, Epstein M (2012) Hypertension and chronic kidney disease progression: why the suboptimal outcomes? Am J Med 125:1057–1062

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harris RC, Neilson EG (2006) Toward a unified theory of renal progression. Annu Rev Med 57:365–380

    Article  CAS  PubMed  Google Scholar 

  41. Polichnowski AJ, Griffin KA, Picken MM et al (2015) Hemodynamic basis for the limited renal injury in rats with angiotensin II-induced hypertension. Am J Physiol 308:F252–F260

    CAS  Google Scholar 

  42. Griffin KA, Bidani AK (2009) Angiotensin II type 2 receptor in chronic kidney disease: the good side of angiotensin II? (Commentary). Kidney Int 75:1006–1008

    Article  CAS  PubMed  Google Scholar 

  43. Kurtz TW, Griffin KA, Bidani AK et al (2005) AHA scientific statement. Recommendation for blood pressure measurements in humans and animals. Part 2: blood pressure measurements in experimental animals. Hypertension 45:299–310. (Also reprinted in: Artheroscler Thromb Vasc Biol 25(3):e22-33)

    Google Scholar 

  44. Baylis C (2012) Nitric oxide synthase derangements and hypertension in kidney disease. Curr Opin Nephrol Hypertens 21:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bachmann S, Bosse HM, Mundel P (1995) Topography of nitric oxide synthesis by localizing constitutive NO synthesis in mammalian kidney. Am J Physiol 268:F885–F898

    CAS  PubMed  Google Scholar 

  46. Griffin K, Polichnowski A, Licea-Vargas H et al (2012) Large BP-dependent and -independent differences in susceptibility to nephropathy after nitric oxide inhibition in Sprague-Dawley rats from two major suppliers. Am J Physiol Renal Physiol 302:F173–F182

    Article  CAS  PubMed  Google Scholar 

  47. Fries JU, Sandstrom DJ, Meyer TW, Rennke HG (1989) Glomerular hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis in the rat. Lab Investig 60:205–218

    CAS  PubMed  Google Scholar 

  48. Kriz W, Elger M, Mundel P, Lemley KV (1995) Structure-stabilizing forces in the glomerular tuft. J Am Soc Nephrol 51:1731–1739

    Google Scholar 

  49. Griffin KA, Bidani AK (2004) Hypertensive renal damage: insights from animal models and clinical relevance. Curr Hypertens Rep 6(2):145–153

    Article  PubMed  Google Scholar 

  50. Christensen PK, Hansen HP (1997) Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int 52:1369–1374

    Article  CAS  PubMed  Google Scholar 

  51. Christensen PK, Hommel EE (1999) Impaired autoregulation of the glomerular filtration rate in patients with nondiabetic nephropathy. Kidney Int 56:1517–1523

    Article  CAS  PubMed  Google Scholar 

  52. Fotheringham J, Odudu A, McKane W, Ellam T (2015) Modification of the relationship between blood pressure and renal albumin permeability by impaired excretory function and diabetes. Hypertension 65:510–516

    Article  CAS  PubMed  Google Scholar 

  53. Appel LI, Wright JT Jr., Green T et al; for the AASK Collaborative Research Group (2010) Intensive blood pressure control in hypertensive chronic kidney disease. N Engl J Med 363:918–929

    Google Scholar 

  54. Upadhyay A, Earley A, Haynes SM, Uhlig K (2011) Systemic review: blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann Intern Med 154:541–548

    Article  PubMed  Google Scholar 

  55. Bidani AK, Griffin KA (2011) Chronic kidney disease: blood pressure targets in chronic kidney disease. Nat Rev Nephrol 7(3):128–130

    Article  PubMed  Google Scholar 

  56. KDIGO (2012) 2012 Clinical practice guidelines for the management of blood pressure in chronic kidney disease. Kidney Int Suppl 2:337–414

    Article  Google Scholar 

  57. Wright JT Jr, Bakris G, Greene T et al (2002) Effect of blood pressure and antihypertensive drug class on progression of hypertensive kidney disease. Results from AASK trial. JAMA 288:2421–2431

    Article  CAS  PubMed  Google Scholar 

  58. Ruggenenti P, Perna A, Loriga G et al (2005) Blood pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomized controlled trial. Lancet 365:939–946

    Article  PubMed  Google Scholar 

  59. The SPRINT Research Group (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116

    Article  PubMed Central  Google Scholar 

  60. Myers MG, Godwin M, Dawes M, Kiss A, Tobe SW, Kaczorowski J (2010) Measurements of blood pressure in the office. Recognizing the problem and proposing the solution. Hypertension 55:195–200

    Article  CAS  PubMed  Google Scholar 

  61. Bidani AK, Griffin KA (2006) The benefits of renin-angiotensin blockade in hypertension are dependent on blood-pressure lowering (viewpoint). Nature Clin Prac Nephrol 2:542–543

    Article  Google Scholar 

  62. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD, Collaborative Study Group (1993) The effects of angiotensin converting enzyme inhibition on diabetic nephropathy. N Engl J Med 329:1456–1462

    Article  CAS  PubMed  Google Scholar 

  63. Hebert LA, Bain RP, Verme D et al (1994) Remission of nephrotic range proteinuria in type I diabetes. Kidney Int 46:1688–1693

    Article  CAS  PubMed  Google Scholar 

  64. Maschio G, Aeti D, Janin G et al (1996) The angiotensin-converting-enzyme inhibition in progressive renal insufficiency study group: effects of the angiotensin-converting-enzyme inhibition benazepril on the progression of chronic renal insufficiency. N Engl J Med 334:939–945

    Article  CAS  PubMed  Google Scholar 

  65. Lewis EJ, Hunsicker LG, Clarke WR et al (2001) Renoprogressive effect of the angiotensin receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860

    Article  CAS  PubMed  Google Scholar 

  66. Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effect of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    Article  CAS  PubMed  Google Scholar 

  67. Hou FF, Zhang X, Zhang GH et al (2006) Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med 354:131–140

    Article  CAS  PubMed  Google Scholar 

  68. Svensson P, de Faire U, Sleight P et al (2001) Comparison of the effects of Ramipril on ambulatory and office blood pressures. A HOPE substudy. Hypertension 38:E28–E32

    Article  CAS  PubMed  Google Scholar 

  69. Nakao N, Yoshimura A, Morita H et al (2003) Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomized controlled trial. Lancet 361:117–124

    Article  CAS  PubMed  Google Scholar 

  70. Mann JF, Schmieder RE, McQueen M et al; ONTARGET Investigators (2008) Renal outcomes with telmisartan, Ramipril or both in people at high vascular risk (the ONTARGET study): a multicentre, randomized, double-blind, controlled trial. Lancet 372:547–553

    Google Scholar 

  71. Parving HH, Brenner BM, McMurray JJ et al; ALTITUDE Investigators (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 367:2204–2213

    Google Scholar 

  72. Fried LF, Emanuele N, Zhang JH et al; VA NEPHRON-D Investigators (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369:1892–1903

    Google Scholar 

  73. Juurlink DN, Mamdani MM, Lee DS et al (2004) Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med 351:543–551

    Article  CAS  PubMed  Google Scholar 

  74. Agarwal R (2007) Ambulatory blood pressure and cardiovascular events in chronic kidney disease. Semin Nephrol 27:538–543

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pogue V, Rahman M, Lipkowitz M et al; for the African American Study of Kidney Disease (2009) Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertension 53:20–27

    Google Scholar 

  76. Drawz PE, Alper AB, Anderson AH et al (2016) Masked hypertension and elevated nighttime blood pressure in CKD: prevalence and association with target organ damage. Clin J Am Soc Nephrol 11:642–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griffin, K.A., Polichnowski, A.J., Bidani, A.K. (2018). Determinants of Hypertensive Renal Disease and Its Progression. In: Berbari, A., Mancia, G. (eds) Disorders of Blood Pressure Regulation. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59918-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59918-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59917-5

  • Online ISBN: 978-3-319-59918-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics