Skip to main content

Uric Acid-Hypertension Relationships

  • Chapter
  • First Online:
Book cover Disorders of Blood Pressure Regulation

Abstract

Recent studies have indicated that hyperuricemia is associated with risk of new onset hypertension and cardiorenal disease. While serum uric acid is a marker and predictor of new onset essential hypertension in the younger hypertensive population, this relation appears to weaken with age. In older hypertensive subjects, hyperuricemia is an indicator of cardiovascular risk rather than development of hypertension.

Urate-lowering therapy is associated with normalization of both serum uric acid and BP in younger population. In contrast, in older hypertensive population, urate-lowering therapy has minimal effects on BP but appears to improve cardiorenal endpoints. In addition to uric acid-reducing agents, decreased consumption of sugar-sweetened beverages and regular physical exercise may lower the risk of BP elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ngo TC, Assimos DG (2007) Uric acid nephrolithiasis: recent progress and future directions. Rev Urol 9:17–27

    PubMed  PubMed Central  Google Scholar 

  2. Borghi C, Agabiti Rosei E, Bardin TH et al (2015) Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens 33:1729–1741

    Article  CAS  PubMed  Google Scholar 

  3. Johnson RJ, Kang DH, Feig D et al (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease. Hypertension 41:1183–1190

    Article  CAS  PubMed  Google Scholar 

  4. Cicero AF, Salvi P, D’Addato S et al (2014) Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: data from the Brisighella Heart Study. J Hypertens 32:57–64

    Article  CAS  PubMed  Google Scholar 

  5. Filippatos GS, Ahmed MI, Gladden JD et al (2011) Hyperuricemia, chronic kidney disease, and outcomes in heart failure: potential mechanistic insights from epidemiological data. Eur Heart J 32:712–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erdogan D, Gullu H, Caliskan M et al (2005) Relationship of serum uric acid to measures of endothelial function and atherosclerosis in healthy adults. Int J Clin Pract 59:1276–1282

    Article  CAS  PubMed  Google Scholar 

  7. Culleton BF (2001) Uric acid and cardiovascular disease: a renal-cardiac relationship. Curr Opin Nephrol Hypertens 10:371–375

    Article  CAS  PubMed  Google Scholar 

  8. Madero M, Sarnak MJ, Wang X et al (2009) Uric acid and long-term outcomes in CKD. Am J Kidney Dis 53:796–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosolowsky ET, Ficociello LH, Maselli NJ et al (2008) High normal serum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 3:706–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. ZHU Y, Pandya BJ, Choi HK (2011) Prevalence of gout and hyperuricemia in the US general population: the national health and nutrition examination survey 2007-2008. Arthritis Rheum 63:3136–3141

    Article  PubMed  Google Scholar 

  11. Mohamed FA (1874) The etiology of Bright’s disease and the prealbuminuric state. Med Chir Trans 39:197–228

    Article  Google Scholar 

  12. Mohamed FA (1879) On chronic Bright’s disease and its essential symptoms. Lancet 1:399–401

    Article  Google Scholar 

  13. Haig A (1890) The connecting link between the high tensión pulse and albuminuria. Br Med J 1:65–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haig A (1892) Uric acid as a factor in the causation of disease: a contribution to the pathology of high arterial tensión, headache, epilepsy, mental depression, gout, rheumatism, diabetes, Bright’s disease, and other disorders, 1st edn. J A Churchill, London

    Google Scholar 

  15. Davis NCL (1897) The cardiovascular and renal relations and manifestations of gout. JAMA 29:261–262

    Article  Google Scholar 

  16. Desgrez A (1913) Influence de la constitution des corps puriques sure leur action vis-a-vis de la pression arterielle (in French). C R Acad Sci 156:93–94

    CAS  Google Scholar 

  17. Feig DI, Kang DH, Nakagawa T et al (2006) Uric acid and hypertension. Curr Hypertens Rep 8:111–115

    Google Scholar 

  18. Chobanian AV, Bakris GL, Black HR et al (2003) The seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure: the JNC 7 report. JAMA 289:2560–2572

    Article  CAS  PubMed  Google Scholar 

  19. Stanton JR, Freis ED (1947) The serum uric acid concentration in essential hypertension. Proc Soc Exp Biol Med 66:193–194

    Article  CAS  PubMed  Google Scholar 

  20. Mazzali M, Kanbay M, Segal MS et al (2010) Uric acid and hypertension: cause or effect. Curr Rheumatol Rep 12:108–117

    Article  CAS  PubMed  Google Scholar 

  21. Mene P, Punzo G (2008) Uric acid: bystander or culprit in hypertension and progressive renal disease? J Hypertens 26:2085–2092

    Article  CAS  PubMed  Google Scholar 

  22. Ruilope LM, Garcia-Puig J (2001) Hyperuricemia and renal function. Curr Hypertens Rep 3:197–202

    Article  CAS  PubMed  Google Scholar 

  23. Allen DG, Milosovich G, Mattock AM (1965) Inhibition of monosodium urate crystal growth. Arthritis Rheum 8:1123–1133

    Article  CAS  PubMed  Google Scholar 

  24. Griebsch A, Zollner N (1974) Effect of ribomononucleotides given orally on uric acid production in man. Adv Exp Med Biol 41:443

    Article  CAS  PubMed  Google Scholar 

  25. Rafey MA, Lipkowitz MS, Leal-Pinto E, Abramson RG (2003) Uric acid transport. Curr Opin Nephrol Hypertens 12:511–516

    Article  CAS  PubMed  Google Scholar 

  26. Anton FM, Garcia Puig AJ, Ramos T et al (1986) Sex differences in uric acid metabolism in adults: evidence for a lack of influence of estradiol-17 Beta (E2) on the renal handling of urate. Metabolism 35:343

    Google Scholar 

  27. Wilcos WR, Khalaf A, Weinberder A et al (1972) Solubility of uric acid and monosodium urate. Mol Biol Eng 10:522–531

    Google Scholar 

  28. Roch-Ramel F, Diezi J (1996) Renal transport of organic ions and uric acid. In: Schrier RW, Gottschalk CW (eds) Diseases of the kidney. Little Brown, Boston, p. 231

    Google Scholar 

  29. Ichida K, Matsuo H, Takada T et al (2012) Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 3:764–770

    Google Scholar 

  30. Sorensen LB (1960) The elimination of uric acid in man. Scand J Clin Lab Invest 12(Suppl 54):1

    Google Scholar 

  31. Simic MG, Jovanovic SV (1989) Antioxidation mechanisms of uric acid. J Am Chem Soc 111:5778–5782

    Article  CAS  Google Scholar 

  32. Squadrito GL, Cueto R, Splenser AE et al (2000) Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 376:333–337

    Article  CAS  PubMed  Google Scholar 

  33. Waring WS, Webb DJ, Maxwell SRJ (2000) Effect of local hyperuricemia on endothelial function in the human forearm vascular bed. Br J Clin Pharmacol 49:511

    Google Scholar 

  34. Rao GN, Corson MA, Berk BC (1991) Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. J Biol Chem 266:8604–8608

    CAS  PubMed  Google Scholar 

  35. Corry DB, Eslami P, Yamamoto K et al (2008) Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens 26:269–275

    Article  CAS  PubMed  Google Scholar 

  36. Kang DH, Han L, Ouyang X et al (2005) Uric acid causes smooth muscle cell proliferation by entering cells via a functional urate transporter. Am J Nephrol 25:425–433

    Article  CAS  PubMed  Google Scholar 

  37. Feig DI, Rang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mikkelsen WM, Dodge HJ, Valkenburg H (1965) The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia. Tecumseh, Michigan 1959-1960. Am J Med 39:242–251

    Article  CAS  PubMed  Google Scholar 

  39. Rice T, Vogler GP, Perry TS et al (1990) Heterogeneity in the familial aggregation of fasting serum uric acid level in five North American populations: the Lipid Research Clinics Family Study. Am J Med Genet 36:219–225

    Google Scholar 

  40. Kalousdian S, Fabsitz R, Havlik R et al (1987) Heritability of clinical chemistries in an older twin cohort: the NHLBI Twin study. Genet Epidemiol 4:1–11

    Article  CAS  PubMed  Google Scholar 

  41. Wilk JB, Djousse L, Borecki I et al (2000) Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Hum Genet 106:355–359

    Article  CAS  PubMed  Google Scholar 

  42. Kottgen A, Albrecht E, Teumer A et al (2013) Genome-wide association analysis identify 18 new loci associated with serum urate concentrations. Nat Genet 45:145–154

    Article  PubMed  CAS  Google Scholar 

  43. Parsa A, Brown E, Weir MR et al (2012) Genotype-based changes in serum uric acid affect blood pressure. Kidney Int 81:502–507

    Article  CAS  PubMed  Google Scholar 

  44. Merriman TR (2015) An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther 17:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sedaghat S, Pazoki R, Uitterlinden AG et al (2014) Association of uric acid risk score with blood pressure: the Rotterdam study. Hypertension 64:1061–1066

    Article  CAS  PubMed  Google Scholar 

  46. Mallamaci F, Testa A, Leonardis D et al (2014) A polymorphism in the major gene regulating serum uric acid associates with clinic SBP and the White-coat effect in family based study. J Hypertens 32:1621–1628

    Article  CAS  PubMed  Google Scholar 

  47. Palmer TM, Nordestigaard BG, Benn M et al (2013) Association of plasma uric acid with ischemic heart disease and blood pressure: Mendelian randomisation analysis of two large cohorts. BMJ 347:f4262

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reginato AM, Mount DB, Yang I, Choi HY (2012) The genetics of hyperuricemia and gout. Nat Rev Rheumatol 8:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nath SD, Vorugant VS, Arar NH et al (2007) Genome scan for determinants of serum uric acid variability. J Am Soc Nephrol 18:3156–3163

    Article  CAS  PubMed  Google Scholar 

  50. Gharavi AG, Yan Y, Scolari F et al (2000) IgA nephropathy, the most common cause of glomerulonephritis is linked to 6q22-23. Nat Genet 26:354–357

    Article  CAS  PubMed  Google Scholar 

  51. Myllymaki J, Honkanen T, Syrjanen J et al (2005) Uric acid correlates with the severity of histopathological parameters in IgA nephropathy. Nephrol Dial Transplant 20:89–95

    Article  PubMed  Google Scholar 

  52. Yoo TW, Sung KC, Kim BS et al (2005) Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ J 69:928–933

    Article  CAS  PubMed  Google Scholar 

  53. Tuomilehto J, Zimmet P, Wolf E et al (1988) Plasma uric acid level and its association with diabetes mellitus and some biologic parameters in a biracial population of Fiji. Am J Epidemiol 127:321–336

    Article  CAS  PubMed  Google Scholar 

  54. Johnson RJ, Segal MS, Srinivas T et al (2005) Essential hypertension, progressive renal disease and uric acid: a pathogenetic link? J Am Soc Nephrol 16:1909–1919

    Article  CAS  PubMed  Google Scholar 

  55. Fam AG (2002) Gout, diet and the insulin resistance syndrome. J Rheumatol 29:1350–1355

    CAS  PubMed  Google Scholar 

  56. UK Gout Society (2014) All about gout and diet. www.ukgoutsociety.org/docs/goutsociety-allaboutgoutanddiet-0113. Accessed 28 Mar 2017

  57. Zhang W, Doherty M, Bardin T et al (2006) EULAR evidence based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65:1312–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khanna D, Fitzgerald JD, Khanna PP et al (2012) 2012 American College of Rheumatology guidelines for management of gout. Part I: systematic non-pharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) 64:1431–1446

    Article  CAS  Google Scholar 

  59. Neogi T (2011) Clinical practice. Gout. N Engl J Med 364:443–452

    Article  CAS  PubMed  Google Scholar 

  60. Lin KC, Lin HY, Chou P (2000) Community based epidemiological study on hyperuricemia and gout in Kin-Hu, Kinmen. J Rheumatol 27:1045–1050

    CAS  PubMed  Google Scholar 

  61. Feig DI, Johnson RJ (2003) Hyperuricemia in childhood primary hypertension. Hypertension 42:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loeffler LF, Navas-Acien A, Brady TM et al (2002) Uric acid level and elevated blood pressure in US adolescents-National Health and Examination Survey, 1999-2006. Hypertension 59:811–817

    Article  CAS  Google Scholar 

  63. Bardin T, Richette P (2014) Definition of hyperuricemia and gouty conditions. Curr Opin Rheumatol 26:186–191

    Article  CAS  PubMed  Google Scholar 

  64. Desideri G, Castaldo G, Lombardi A et al (2014) Is it time to revise the normal range of serum uric acid levels? Eur Rev Med Pharmacol Sci 18:1295–1306

    CAS  PubMed  Google Scholar 

  65. Zalokar J, Lellouch J, Claude JR (1981) Serum urate and gout in 4663 young male workers. Sem Hop 57:664–670

    CAS  PubMed  Google Scholar 

  66. Qiu L, Cheng XQ, Wu J et al (2013) Prevalence of hyperuricemia and its related risk factors in health adults from Northern and Northeastern Chinese provinces. BMC Public Health 13:664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chou CT, Lai JS (1998) The epidemiology of hyperuricemia and gout in Taiwan aborigines. Br J Rheumatol 37:258–262

    Article  CAS  PubMed  Google Scholar 

  68. Mikuls TR, Farrar JT, Bilker WB et al (2005) Gout epidemiology: results from the UK general practice research database 2000-2005. Ann Rheum Dis 64:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Desideri G, Puig TG, Richette P (2015) The management of hyperuricemia with urate deposition. Curr Med Res Opin 31(Suppl 2):27–32

    Article  PubMed  Google Scholar 

  70. Tremblay MS, Katzmarzyk PT, Willms JD (2002) Temporal trends in overweight and obesity in Canada, 1981-1996. Int J Obes Relat Metab Disord 26:538–543

    Article  CAS  PubMed  Google Scholar 

  71. Ogden CL, Carroll MD, Curtin LR et al (2006) Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 295:1549–1555

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen ST, Choi HK, Lustig RH, Hsu C-Y (2009) Sugar sweetened beverages, serum uric acid and blood pressure in adolescents. J Pediatr 154:807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meneses-Leon J, Denova-Gutiérrez E, Castañón-Robles S et al (2014) Sweetened beverage consumption and the risk of hyperuricemia in Mexican adults: a cross-study. BMC Public Health 14:445

    Article  PubMed  PubMed Central  Google Scholar 

  74. Choi JWJ, Ford ES, Gao X, Choi HK (2008) Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid levels: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 59:109–116

    Article  CAS  PubMed  Google Scholar 

  75. Trifiro G, Morabito P, Cavagna L et al (2013) Epidemiology of gout and hyperuricemia in Italy during the years 2005-2009: a nationwide population-based study. Ann Rheum Dis 72:694–700

    Article  CAS  PubMed  Google Scholar 

  76. Qazi Y (2016) Hyperuricemia. http://emedicine.medscape.com/article/241767-overview. Accessed 29 Mar 2017

  77. Cannon PJ, Stason WB, Fe D et al (1966) Hyperuricemia in primary and renal hypertension. N Engl J Med 275:457–464

    Article  CAS  PubMed  Google Scholar 

  78. Klein R, Klein BE, Cornoni JC et al (1973) Serum uric acid: its relationship to coronary heart disease risk factors and cardiovascular disease, Evans County, Georgia. Arch Intern Med 132:401–410

    Article  CAS  PubMed  Google Scholar 

  79. Longo-Mbenza B, Luila EL, Mbete P, Vita EK (1999) Is hyperuricemia a risk factor of stroke and coronary heart disease among Africans? Int J Cardiol 71:17–22

    Google Scholar 

  80. Kim YH, Suh YD, Son SP et al (1985) Observation of the serum uric acid in essential hypertension. Korean J Med 28:56–63

    Google Scholar 

  81. Saggiani F, Pilati S, Targher G et al (1996) Serum uric acid and related factors in 500 hospitalized subjects. Metabolism 45:1557–1561

    Article  CAS  PubMed  Google Scholar 

  82. Wallace SL (1975) Gout and hypertension. Arthritis Rheum 18:721–724

    Article  CAS  PubMed  Google Scholar 

  83. Johnson RJ, Feig DJ, Herreira-Acosta J, Kang DH (2005) Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension 45:18–20

    Article  CAS  PubMed  Google Scholar 

  84. Lip GYH, Beevers M, Beevers DG (2000) Serum urate is associated with baseline renal dysfunction but not survival or deterioration in renal function in malignant phase hypertension. J Hypertens 18:97–101

    Article  CAS  PubMed  Google Scholar 

  85. Lee JJ, Ahn J, Hwang J et al (2015) Relationship between uric acid and blood pressure in different age groups. Clin Hypertens 21:14

    Article  PubMed  PubMed Central  Google Scholar 

  86. Norwood VF (2002) Hypertension. Pediatr Rev 23:197–208

    Article  PubMed  Google Scholar 

  87. Viazzi F, Antolini L, Giussani M et al (2013) Serum uric acid and blood pressure in children at cardiovascular risk. Pediatrics 132:e93–e99

    Article  PubMed  Google Scholar 

  88. Alper AB Jr, Chen W, Yau L et al (2005) Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension 45:34–38

    Article  CAS  PubMed  Google Scholar 

  89. Grayson PC, Kim SY, LaValley M, Choi HK (2011) Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 63:102–110

    Article  CAS  Google Scholar 

  90. Bombelli M, Ronchi J, Volpe M et al (2014) Prognostic value of serum uric acid: new-onset in and out-of-office hypertension and long-term mortality. J Hypertens 32:1237–1244

    Article  CAS  PubMed  Google Scholar 

  91. Forman JP, Choi H, Curhan GC (2007) Plasma uric acid levels and risk of incident hypertension among men. J Am Soc Nephrol 18:287–292

    Article  CAS  PubMed  Google Scholar 

  92. Sagen N, Haram K, Nilsen ST (1984) Serum urate as a predictor of fetal outcome in severe preeclampsia. Acta Obstet Gynecol Scand 63:71–75

    Article  CAS  PubMed  Google Scholar 

  93. Roberts JM, Bodnar LM, Lain KY et al (2005) Uric acid is as important as proteinuria in identifying fetal risk in women with gestational hypertension. Hypertension 46:1263–1269

    Article  CAS  PubMed  Google Scholar 

  94. Bellomo G, Venanzi S, Saronio P et al (2011) Prognostic significance of serum uric acid in women with gestational hypertension. Hypertension 58:704–708

    Article  CAS  PubMed  Google Scholar 

  95. Nochy D, Birembaut P, Hinglais N et al (1980) Renal lesions in the hypertensive syndromes of pregnancy: immunomorphological and ultrastructural studies in 114 cases. Clin Nephrol 13:155–162

    CAS  PubMed  Google Scholar 

  96. Liang J, Xue Y, Zou C et al (2009) Serum uric acid and prehypertension among Chinese adults. J Hypertens 27:1761–1765

    Article  CAS  PubMed  Google Scholar 

  97. Mancia G, Parati G, Hennig M et al (2001) Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens 19:1981–1989

    Article  CAS  PubMed  Google Scholar 

  98. Verdecchia P, Angeli F, Gattobigio R et al (2007) Impact of blood pressure variability on cardiac and cerebrovascular complications in hypertension. Am J Hypertens 20:154–161

    Article  PubMed  Google Scholar 

  99. Çağli K, Turak O, Canpolat U et al (2015) Association of serum uric acid level with blood pressure variability in newly diagnosed essential hypertension. J Clin Hypertens 17:929–935

    Article  CAS  Google Scholar 

  100. Reaven GM, Lithell H, Landsberg L (1996) Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med 334:374–381

    Article  CAS  PubMed  Google Scholar 

  101. Modan M, Halkin H, Karasik A, Lusky A (1987) Elevated serum uric acid—a facet of hyperinsulinaemia. Diabetologia 30:713–718

    Article  CAS  PubMed  Google Scholar 

  102. Forman JP, Choi H, Curhan GC (2009) Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med 169:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Watanabe S, Kang DH, Feng L et al (2002) Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 40:355–360

    Article  CAS  PubMed  Google Scholar 

  104. Cappuccio FP, Strazzullo P, Farinaro E, Trevisan M (1993) Uric acid metabolism and tubular sodium handling. JAMA 270:354–359

    Article  CAS  PubMed  Google Scholar 

  105. Schachter M (2005) Uric acid and hypertension. Curr Pharm Des 11:4139–4143

    Article  CAS  PubMed  Google Scholar 

  106. Mazzali M, Hughes J, Kim YG et al (2001) Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38:1101–1106

    Article  CAS  PubMed  Google Scholar 

  107. Mazzali M, Kanellis J, Han C et al (2002) Hyperuricemia induces a primary renal arteriolopathy in rats by a blood-independent mechanism. Am J Physiol Renal Physiol 282:F991–F997

    Google Scholar 

  108. Yanik M, Feig DI (2013) Serum urate: a biomarker or treatment target in pediatric hypertension. Curr Opin Cardiol 28:433–438

    Google Scholar 

  109. Kanellis J, Watanabe S, Li JH et al (2003) Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 41:1287–1293

    Article  CAS  PubMed  Google Scholar 

  110. Price K, Sautin Y, Long D et al (2006) Human vascular muscle cells express a urate transporter. J Am Soc Nephrol 17:1791–1795

    Article  CAS  PubMed  Google Scholar 

  111. Török E, Gyárfás I, Csukás M (1985) Factors associated with stable high blood pressure in adolescents. J Hypertens Suppl 3:S389–S390

    Google Scholar 

  112. Gruskin AB (1985) The adolescent with essential hypertension. Am J Kidney Dis 6:86–90

    Article  CAS  PubMed  Google Scholar 

  113. Krishnan E, Kwoh CK, Schumacher HR, Kuller L (2007) Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension 49:298–303

    Article  CAS  PubMed  Google Scholar 

  114. Feig DI, Soletsky B, Johnson RJ (2008) Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension. A randomized trial. JAMA 300:924–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Soletsky B, Feig DI (2012) Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension 60:1148–1156

    Article  CAS  PubMed  Google Scholar 

  116. Messerli FH, Frohlich ED, Dreslinski GR et al (1980) Serum uric acid in essential hypertension: an indicator of renal vascular involvement. Ann Intern Med 93:817–821

    Article  CAS  PubMed  Google Scholar 

  117. Ferris TF, Gorden P (1968) Effect of angiotensin and norepinephrine upon urate clearance in man. Am J Med 44:359–365

    Article  CAS  PubMed  Google Scholar 

  118. Scheepers LE, Boonen A, Pijnenburg W et al (2017) Associations of plasma uric acid and purine metabolites with blood pressure in children: the KOALA Birth Cohort Study. J Hypertens 35:982–993

    Article  CAS  PubMed  Google Scholar 

  119. Scheepers LE, Wei FF, Stolarz-Zkrzypek K et al (2016) Xanthine oxidase-gene variants and their association with blood pressure and incident hypertension: a population study. J Hypertens 34:2147–2154

    Article  CAS  PubMed  Google Scholar 

  120. Li Y, Wei FF, Wang S et al (2014) Cardiovascular risks associated with diastolic blood pressure and isolated diastolic hypertension. Curr Hypertens Rep 16:489

    Article  PubMed  CAS  Google Scholar 

  121. Dawson J, Jeemon P, Hetherington L et al (2013) Serum uric acid level, longitudinal blood pressure, renal function and long-term mortality in treated hypertensive patients. Hypertension 62:105–111

    Article  CAS  PubMed  Google Scholar 

  122. Agarwal V, Hans N, Messerli FH (2013) Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens 15:435–442

    Article  CAS  Google Scholar 

  123. Beattie CJ, Fulton RL, Higgins P et al (2014) Allopurinol initiation and change in blood pressure in older adults with hypertension. Hypertension 64:1102–1107

    Article  CAS  PubMed  Google Scholar 

  124. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular disease: the role of oxidant stress. Circ Res 87:840–844

    Article  CAS  PubMed  Google Scholar 

  125. Khosla UM, Zharikov S, Finch JL et al (2005) Hyperuricemia induces endothelial dysfunction. Kidney Int 67:1739–1742

    Article  PubMed  Google Scholar 

  126. MacIsaac RL, Salatzki J, Higgins P et al (2016) Allopurinol and cardiovascular outcomes in adults with hypertension. Hypertension 67:535–540

    CAS  PubMed  Google Scholar 

  127. Kang DH, Finch J, Nakagawa T et al (2004) Uric acid, endothelial dysfunction and pre-eclampsia: searching for a pathogenetic link. J Hypertens 22:229–235

    Article  CAS  PubMed  Google Scholar 

  128. Latif W, Karaboyas A, Tong L et al (2011) Uric acid levels and all-cause and cardiovascular mortality in the hemodialysis population. Clin J Am Soc Nephrol 6:2470–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rodriguez-Arias JJ, Coll-de-Tuero G (2015) Could uric acid be considered a cardiovascular risk factor? J Clin Hypertens 17:936–937

    Article  Google Scholar 

  130. Zhao G, Huang L, Song M, Song Y (2013) Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis 231:61–68

    Article  CAS  PubMed  Google Scholar 

  131. Kim SY, Guevara JP, Kim KM et al (2009) Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum 61:885–892

    Article  PubMed  PubMed Central  Google Scholar 

  132. Niskanen LK, Laaksonen DE, Nyyssonen K et al (2004) Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med 164:1546–1551

    Article  CAS  PubMed  Google Scholar 

  133. Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131:7–13

    Article  CAS  PubMed  Google Scholar 

  134. Weiner DE, Tighiouart H, Elsayed EF et al (2008) Uric acid and incident kidney disease in the community. J Am Soc Nephrol 19:1204–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Franse LV, Pahor M, Di Bari M et al (2000) Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the Elderly Program (SHEP). J Hypertens 18:1149–1154

    Article  CAS  PubMed  Google Scholar 

  136. Stack AG, Hanley A, Casserly LF et al (2013) Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM 106:647–658

    Article  CAS  PubMed  Google Scholar 

  137. Hoieggen A, Alderman MH, Kjeldsen SE et al (2004) The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int 65:1041–1049

    Article  CAS  PubMed  Google Scholar 

  138. Hooper DC, Spitsin S, Kean RB et al (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95:675–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ascherio A, LeWitt PA, Xu K et al (2009) Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 66:1460–1468

    Article  PubMed  PubMed Central  Google Scholar 

  140. Spitsin S, Koprowski H (2010) Role of uric acid in Alzheimer’s disease. J Alzheimers Dis 19:1337–1338

    Article  CAS  PubMed  Google Scholar 

  141. Hershfield MS, Roberts LJ II, Ganson NJ et al (2010) Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an oxidant in vivo. Proc Natl Acad Sci U S A 107:14351–14356

    Google Scholar 

  142. Viazzi F, Parodi D, Leoncini G et al (2005) Serum uric acid and target organ damage in primary hypertension. Hypertension 45:991–995

    Article  CAS  PubMed  Google Scholar 

  143. Chonchol M, Shlipak MG, Katz R et al (2007) Relationship of uric acid with progression of kidney disease. Am J Kidney Dis 50:239–247

    Article  CAS  PubMed  Google Scholar 

  144. Iseki K, Oshiro S, Tozawa M et al (2001) Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res 24:691–697

    Article  CAS  PubMed  Google Scholar 

  145. Syrjanen J, Mustonen J, Pastemack A (2000) Hypertriglyceridemia and hyperuricemia are risk factors for progression of IgA nephropathy. Nephrol Dial Transplant 15:34–42

    Article  CAS  PubMed  Google Scholar 

  146. Obermayr RP, Temmi C, Gutjahr G et al (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19:2407–2413

    Article  PubMed  PubMed Central  Google Scholar 

  147. Siu YP, Leung KT, Tong MKH, Kwan TH (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47:51–59

    Article  CAS  PubMed  Google Scholar 

  148. Moe OW (2010) Posing the question again: does chronic uric acid nephropathy exist? J Am Soc Nephrol 21:395–397

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zhu Y, Pandya BJ, Choi HK (2012) Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am J Med 125:679–687

    Article  PubMed  Google Scholar 

  150. Chonko AM, Richardson WP (1994) Urate and uric acid nephropathy, cystinosis, and oxalosis. In: Tisher CC, Brenner BM (eds) Renal pathology with clinical and functional correlations. JP Lippincott, Philadelphia, pp 1413–1441

    Google Scholar 

  151. Ejaz AA, Mu W, Kang DH et al (2007) Could uric acid have a role in acute renal failure? Clin J Am Soc Nephrol 2:16–21

    Article  CAS  PubMed  Google Scholar 

  152. Shimada M, Johnson RJ, May WS Jr et al (2009) A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol Dial Transplant 24:2960–2964

    Article  CAS  PubMed  Google Scholar 

  153. Ronco C, Inguaggiato P, Bordoni V et al (2005) Rasburicase therapy in acute hyperuricemia and renal dysfunction. Contrib Nephrol 147:115–123

    CAS  PubMed  Google Scholar 

  154. Ejaz AA, Beaver TM, Shimada M et al (2009) Uric acid: a novel risk factor for acute kidney injury in high-risk cardiac surgery patients? Am J Nephrol 30:425–429

    Article  CAS  PubMed  Google Scholar 

  155. Mehta RL, Pascual MT, Soroco S, Chertow GM (2002) Diuretics, mortality and nonrecovery of renal function in acute renal failure. JAMA 288:2547–2553

    Article  CAS  PubMed  Google Scholar 

  156. Wallace KL, Riedel AA, Joseph-Ridge N, Wortmann R (2004) Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J Rheumatol 31:1582–1587

    PubMed  Google Scholar 

  157. So A, Thorens B (2010) Uric acid transport and disease. J Clin Invest 120:1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sui X, Church TS, Meriwether RA et al (2008) Uric acid and the development of metabolic syndrome in women and men. Metabolism 57:845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bomback AS, Derebail VK, Shoham DA et al (2010) Sugar-sweetened soda consumption, hyperuricemia and kidney disease. Kidney Int 77:609–616

    Article  CAS  PubMed  Google Scholar 

  160. Welsh JA, Sharma A, Abramson JL et al (2010) Caloric sweetener consumption and dyslipidemia among US adults. JAMA 303:1490–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fox IH, Kelley WN (1972) Studies of the mechanism of fructose-induced hyperuricemia in man. Metabolism 21:713–721

    Article  CAS  PubMed  Google Scholar 

  162. Johnson RJ, Sanchez-Lozada LG, Nakagawa T (2010) The effect of fructose on renal biology and disease. J Am Soc Nephrol 21:2036–2039

    Article  CAS  PubMed  Google Scholar 

  163. DiNicolantonio JJ, Lucan SC (2014) The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart 1:e000167

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bunag RD, Tomita T, Sasaki S (1983) Chronic sucrose ingestion induces mild hypertension and tachycardia in rats. Hypertension 5:218–225

    Article  CAS  PubMed  Google Scholar 

  165. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10:512–516

    Article  CAS  PubMed  Google Scholar 

  166. Jalal DI, Smits G, Johnson RJ, Chonchol M (2010) Increased fructose associates with elevated blood pressure. J Am Soc Nephrol 21:1543–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Souza Bda S, Cunha DB, Pereira RA, Sichieri R (2016) Soft drink consumption, mainly diet ones, is associated with increased blood pressure in adolescents. J Hypertens 34:221–225

    Article  PubMed  CAS  Google Scholar 

  168. Perez-Pozo SE, Schold J, Nakagawa T et al (2010) Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes 34:454–461

    Article  CAS  Google Scholar 

  169. Forman JP, Choi H, Curhan GC (2009) Fructose and vitamin C intake do not influence risk for developing hypertension. J Am Soc Nephrol 20:863–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cohen L, Curhan G, Forman J (2012) Association of sweetened beverage intake with incident hypertension. J Gen Intern Med 27:1127–1134

    Article  PubMed  PubMed Central  Google Scholar 

  171. Shoham DA, Durazo-Arvizu R, Kramer H et al (2008) Sugary soda consumption and albuminuria: results from the National Health and Nutrition Examination Survey, 1999-2004. PLoS One 3:e3431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Hollander W, Wilkins RW (1957) Chlorothiazide: a new type of drug for the treatment of arterial hypertension. BMQ 8:69–75

    CAS  PubMed  Google Scholar 

  173. Psaty BM, Smith NL, Siscovick DS et al (1997) Health outcomes associated with antihypertensive therapies used as first-line agents. A systemic review and meta-analysis. JAMA 277:739–745

    Article  CAS  PubMed  Google Scholar 

  174. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipi-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997

    Article  Google Scholar 

  175. Reungjui S, Pratipanawatr T, Johnson RJ, Nakagawa T (2008) Do thiazides worsen metabolic syndrome and renal disease? The pivotal roles for hyperuricemia and hypokalemia. Curr Opin Nephrol Hypertens 17:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Reyes AJ (2002) Diuretics in the therapy of hypertension. J Hum Hypertens 16(Suppl 1):S78–S83

    Article  CAS  PubMed  Google Scholar 

  177. Alderman MH, Cohen H, Madhavan S, Kivlighn S (1999) Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension 34:144–150

    Article  CAS  PubMed  Google Scholar 

  178. Hawkins RG, Houston MC (2005) Is population-wide diuretic use directly associated with the incidence of end-stage renal disease in the Unites States? A hypothesis. Am J Hypertens 18:744–749

    Article  PubMed  Google Scholar 

  179. Reungjui S, Hu H, Mu W et al (2007) Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia. Kidney Int 72:1483–1492

    Article  CAS  PubMed  Google Scholar 

  180. Dawson J, Walters M (2006) Uric acid xanthine oxidase: future targets in the prevention of cardiovascular disease? Br J Clin Pharmacol 62:633–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Elasy T, Kaminsky D, Tracy M, Mehler PS (1995) Allopurinol hypersensitivity syndrome revisited. West J Med 162:360–361

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Singer JZ, Wallace SL (1986) The allopurinol hypersensitivity syndrome. Unnecessary morbidity and mortality. Arthritis Rheum 29:82–87

    Article  CAS  PubMed  Google Scholar 

  183. Rekhraj S, Gandy SJ, Szwejkowski BR et al (2013) High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol 61:926–932

    Article  CAS  PubMed  Google Scholar 

  184. Sezer S, Karakan S, Atesagaoglu B, Acar FN (2014) Allopurinol reduces cardiovascular risks and improves renal function in pre-dialysis chronic kidney disease patients with hyperuricemia. Saudi J Kidney Dis Transpl 25:316–320

    Article  PubMed  Google Scholar 

  185. Sircar D, Chatterjee S, Waikhom R et al (2015) Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 66:945–950

    Article  CAS  PubMed  Google Scholar 

  186. Higgins P, Walters MR, Murray HM et al (2014) Allopurinol reduces brachial and central blood pressure and carotid intima media thickness progression after ischaemic stroke and transient ischaemic attack: a randomized controlled trial. Heart 100:1085–1092

    Article  CAS  PubMed  Google Scholar 

  187. Butler R, Morris AD, Belch JJ et al (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751

    Article  CAS  PubMed  Google Scholar 

  188. Borgi L, McMullan C, Wohlhueter A et al (2017) Effect of uric acid lowering agents on endothelial function: a randomized, double-blind, placebo-controlled trial. Hypertension 69:243–248

    Article  CAS  PubMed  Google Scholar 

  189. Chen L, Caballero B, Mitchell DC et al (2010) Reducing consumption of sugar sweetened beverages is associated with reduced blood pressure: a prospective study among United States adults. Circulation 121:2398–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Saladini F, Mos L, Fania C et al (2017) Regular physical activity prevents development of hypertension in young people with hyperuricemia. J Hypertens 35:994–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel E. Berbari M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Berbari, A.E., Daouk, N.A., Mancia, G. (2018). Uric Acid-Hypertension Relationships. In: Berbari, A., Mancia, G. (eds) Disorders of Blood Pressure Regulation. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59918-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59918-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59917-5

  • Online ISBN: 978-3-319-59918-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics