Skip to main content

Genetics of Blood Pressure and Hypertension

  • Chapter
  • First Online:
Book cover Disorders of Blood Pressure Regulation

Abstract

The genetic contribution to hypertension and blood pressure regulation is evident from twin studies, rare mutations causing monogenic blood pressure syndromes, and more recently emerging evidence from genome-wide association studies. The ongoing efforts to understand blood pressure genetics and the downstream molecular and physiological pathways highlight the complexity of the blood pressure phenotype and the major challenges that still need to be overcome to translate these findings into clinical applications that will benefit patients. The encouraging results from metabolomic profiling in hypertension indicate that these signals might be more tractable and integrating genomics and metabolomics may accelerate functional studies. In this chapter we describe the current state of the art in blood pressure and hypertension genomics and emerging insights from metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kotchen TA, Kotchen JM, Grim CE et al (2000) Genetic determinants of hypertension: identification of candidate phenotypes. Hypertension 36:7–13

    Article  CAS  PubMed  Google Scholar 

  2. Havlik RJ, Garrison RJ, Feinleib M et al (1979) Blood pressure aggregation in families. Am J Epidemiol 110:304–312

    Article  CAS  PubMed  Google Scholar 

  3. Kupper N, Willemsen G, Riese H et al (2005) Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 45:80–85

    Article  CAS  PubMed  Google Scholar 

  4. Wang NY, Young JH, Meoni LA et al (2008) Blood pressure change and risk of hypertension associated with parental hypertension: the Johns Hopkins Precursors Study. Arch Intern Med 168:643–648

    Article  PubMed  Google Scholar 

  5. Luft FC (2001) Twins in cardiovascular genetic research. Hypertension 37:350–356

    Article  CAS  PubMed  Google Scholar 

  6. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  CAS  PubMed  Google Scholar 

  7. Padmanabhan S, Caulfield M, Dominiczak AF (2015) Genetic and molecular aspects of hypertension. Circ Res 116:937–959

    Article  CAS  PubMed  Google Scholar 

  8. Weelcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  9. Levy D, Larson MG, Benjamin EJ et al (2007) Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 8(Suppl 1):S3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Levy D, Ehret GB, Rice K et al (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet 41:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newton-Cheh C, Johnson T, Gateva V et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Newton-Cheh C, Larson MG, Vasan RS et al (2009) Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet 41:348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehret GB, Munroe PB, Rice KM et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109

    Article  CAS  PubMed  Google Scholar 

  14. Wain LV, Verwoert GC, O’Reilly PF et al (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43:1005–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Padmanabhan S, Melander O, Johnson T et al (2010) Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet 6:e1001177

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salvi E, Kutalik Z, Glorioso N et al (2012) Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension 59:248–255

    Article  CAS  PubMed  Google Scholar 

  17. Kato N, Takeuchi F, Tabara Y et al (2011) Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 43:531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franceschini N, Fox E, Zhang Z et al (2013) Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet 93:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu X, Wang L, Lin X et al (2015) Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet 24:865–874

    Article  CAS  PubMed  Google Scholar 

  20. Ganesh SK, Chasman DI, Larson MG et al (2014) Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations. Am J Hum Genet 95:49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simino J, Shi G, Bis JC et al (2014) Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum Genet 95:24–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simino J, Sung YJ, Kume R et al (2013) Gene-alcohol interactions identify several novel blood pressure loci including a promising locus near SLC16A9. Front Genet 4:277

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sung YJ, de Las FL, Schwander KL et al (2015) Gene-smoking interactions identify several novel blood pressure loci in the Framingham Heart Study. Am J Hypertens 28:343–354

    Article  PubMed  Google Scholar 

  24. Basson J, Sung YJ, Schwander K et al (2014) Gene-education interactions identify novel blood pressure loci in the Framingham Heart Study. Am J Hypertens 27:431–444

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lifton RP, Dluhy RG, Powers M et al (1992) A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355:262–265

    Article  CAS  PubMed  Google Scholar 

  26. Cerame BI, New MI (2000) Hormonal hypertension in children: 11beta-hydroxylase deficiency and apparent mineralocorticoid excess. J Pediatr Endocrinol Metab 13:1537–1547

    Article  CAS  PubMed  Google Scholar 

  27. Wilson FH, Disse-Nicodeme S, Choate KA et al (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112

    Article  CAS  PubMed  Google Scholar 

  28. Boyden LM, Choi M, Choate KA et al (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimkets RA, Warnock DG, Bositis CM et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414

    Article  CAS  PubMed  Google Scholar 

  30. Simon DB, Karet FE, Hamdan JM et al (1996) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13:183–188

    Article  CAS  PubMed  Google Scholar 

  31. Simon DB, Nelson-Williams C, Bia MJ et al (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12:24–30

    Article  CAS  PubMed  Google Scholar 

  32. Zennaro MC, Boulkroun S, Fernandes-Rosa F (2015) An update on novel mechanisms of primary aldosteronism. J Endocrinol 224:R63–R77

    Article  CAS  PubMed  Google Scholar 

  33. Brown MJ (2014) Ins and outs of aldosterone-producing adenomas of the adrenal: from channelopathy to common curable cause of hypertension. Hypertension 63:24–26

    Article  CAS  PubMed  Google Scholar 

  34. Fishbein L (2016) Pheochromocytoma and Paraganglioma: genetics, diagnosis, and treatment. Hematol Oncol Clin North Am 30:135–150

    Article  PubMed  Google Scholar 

  35. Mutig K, Kahl T, Saritas T et al (2011) Activation of the bumetanide-sensitive Na+, K+, 2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J Biol Chem 286:30200–30210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Graham LA, Padmanabhan S, Fraser NJ et al (2014) Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension 63:551–558

    Article  CAS  PubMed  Google Scholar 

  37. Trudu M, Janas S, Lanzani C et al (2013) Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 19:1655–1660

    Article  CAS  PubMed  Google Scholar 

  38. Arora P, Wu C, Khan AM et al (2013) Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest 123:3378–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vattikuti S, Guo J, Chow CC (2012) Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet 8:e1002637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Menni C, Graham D, Kastenmuller G et al (2015) Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension 66:422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao Y, Peng J, Lu C et al (2014) Metabolomic heterogeneity of pulmonary arterial hypertension. PLoS One 9:e88727

    Article  PubMed  PubMed Central  Google Scholar 

  44. Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60

    Article  CAS  PubMed  Google Scholar 

  45. Dietrich S, Floegel A, Weikert C et al (2016) Identification of serum metabolites associated with incident hypertension in the European prospective investigation into cancer and nutrition-Potsdam Study. Hypertension 68:471–477

    Article  CAS  PubMed  Google Scholar 

  46. Kulkarni H, Meikle PJ, Mamtani M et al (2013) Plasma lipidomic profile signature of hypertension in Mexican American families: specific role of diacylglycerols. Hypertension 62:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng Y, Yu B, Alexander D et al (2013) Metabolomics and incident hypertension among blacks: the atherosclerosis risk in communities study. Hypertension 62:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Menni C, Mangino M, Cecelja M et al (2015) Metabolomic study of carotid-femoral pulse-wave velocity in women. J Hypertens 33:791–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna F. Dominiczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padmanabhan, S., Tan, LE., Dominiczak, A.F. (2018). Genetics of Blood Pressure and Hypertension. In: Berbari, A., Mancia, G. (eds) Disorders of Blood Pressure Regulation. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59918-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59918-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59917-5

  • Online ISBN: 978-3-319-59918-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics