Skip to main content

Generalized B-Splines in Isogeometric Analysis

  • Conference paper
  • First Online:
Approximation Theory XV: San Antonio 2016 (AT 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 201))

Included in the following conference series:

Abstract

In this paper, we survey the use of generalized B-splines in isogeometric Galerkin and collocation methods. Generalized B-splines are a special class of Tchebycheffian B-splines and form an attractive alternative to standard polynomial B-splines and NURBS in both modeling and simulation. We summarize their definition and main properties, and we illustrate their use in a selection of numerical examples in the context of isogeometric analysis. For practical applications, we mainly focus on trigonometric and hyperbolic generalized B-splines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aimi, M. Diligenti, M.L. Sampoli, A. Sestini, Non-polynomial spline alternatives in isogeometric symmetric Galerkin BEM. Appl. Numer. Math. 116, 10–23 (2017)

    Article  MathSciNet  Google Scholar 

  2. F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation. Math. Models Methods Appl. Sci. 20, 2075–2107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.E. Bank, R.K. Smith, A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30, 921–935 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bracco, D. Cho, Generalized T-splines and VMCR T-meshes. Comput. Methods Appl. Mech. Eng. 280, 176–196 (2014)

    Article  MathSciNet  Google Scholar 

  6. C. Bracco, F. Roman, Spaces of generalized splines over T-meshes. J. Comput. Appl. Math. 294, 102–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Bracco, D. Berdinsky, D. Cho, M.-J. Oh, T.-W. Kim, Trigonometric generalized T-splines. Comput. Methods Appl. Mech. Eng. 268, 540–556 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Bracco, T. Lyche, C. Manni, F. Roman, H. Speleers, Generalized spline spaces over T-meshes: dimension formula and locally refined generalized B-splines. Appl. Math. Comput. 272, 187–198 (2016)

    MathSciNet  Google Scholar 

  9. C. Bracco, T. Lyche, C. Manni, F. Roman, H. Speleers, On the dimension of Tchebycheffian spline spaces over planar T-meshes. Comput. Aided Geom. Design 45, 151–173 (2016)

    Article  MathSciNet  Google Scholar 

  10. J.M. Carnicer, E. Mainar, J.M. Peña, Critical length for design purposes and extended Chebyshev spaces. Constr. Approx. 20, 55–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Costantini, Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Design 17, 419–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Costantini, T. Lyche, C. Manni, On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Chichester, 2009)

    Book  Google Scholar 

  14. C. de Boor, A Practical Guide to Splines, Revised edn. (Springer, New York, 2001)

    MATH  Google Scholar 

  15. J. Deng, F. Chen, Y. Feng, Dimensions of spline spaces over T-meshes. J. Comput. Appl. Math. 194, 267–283 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local \(h\)-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199, 264–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.R. Forsey, R.H. Bartels, Hierarchical B-spline refinement. Comput. Graph. 22, 205–212 (1988)

    Article  Google Scholar 

  19. C. Garoni, C. Manni, F. Pelosi, S. Serra-Capizzano, H. Speleers, On the spectrum of stiffness matrices arising from isogeometric analysis. Numer. Math. 127, 751–799 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Giannelli, B. Jüttler, H. Speleers, THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Design 29, 485–498 (2012)

    Google Scholar 

  21. C. Giannelli, B. Jüttler, H. Speleers, Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comp. Math. 40, 459–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.L. Gould, Introduction to Linear Elasticity (Springer, Berlin, 1999)

    Google Scholar 

  23. R.R. Hiemstra, F. Calabrò, D. Schillinger, T.J.R. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 966–1004 (2017)

    Article  MathSciNet  Google Scholar 

  24. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.W. Jerome, L.L. Schumaker, Local support bases for a class of spline functions. J. Approx. Theory 16, 16–27 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. P.E. Koch, T. Lyche, Interpolation with exponential B-splines in tension, in Geometric Modelling, ed. by G. Farin, H. Hagen, H. Noltemeier, W. Knödel (Springer, Berlin, 1993), pp. 173–190

    Chapter  Google Scholar 

  27. B.I. Kvasov, P. Sattayatham, GB-splines of arbitrary order. J. Comput. Appl. Math. 104, 63–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. X. Li, M.A. Scott, Analysis-suitable T-splines: characterization, refineability, and approximation. Math. Models Methods Appl. Sci. 24, 1141–1164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Lyche, A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–173 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Mainar, J.M. Peña, J. Sánchez-Reyes, Shape preserving alternatives to the rational Bézier model. Comput. Aided Geom. Design 18, 37–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Manni, H. Speleers, Standard and non-standard CAGD tools for isogeometric analysis: a tutorial, in IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs, ed. by A. Buffa, G. Sangalli. Lecture Notes in Mathematics, vol. 2161 (2016), pp. 1–69

    Google Scholar 

  32. C. Manni, F. Pelosi, M.L. Sampoli, Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 867–881 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Manni, F. Pelosi, M.L. Sampoli, Isogeometric analysis in advection–diffusion problems: tension splines approximation. J. Comput. Appl. Math. 236, 511–528 (2011)

    Google Scholar 

  34. C. Manni, F. Pelosi, H. Speleers, Local hierarchical \(h\)-refinements in IgA based on generalized B-splines, in Mathematical Methods for Curves and Surfaces 2012, ed. by M. Floater, et al. Lecture Notes in Computer Science, vol. 8177 (2014), pp. 341–363

    Google Scholar 

  35. C. Manni, A. Reali, H. Speleers, Isogeometric collocation methods with generalized B-splines. Comput. Math. Appl. 70, 1659–1675 (2015)

    Article  MathSciNet  Google Scholar 

  36. M.L. Mazure, Four properties to characterize Chebyshev blossoms. Constr. Approx. 17, 319–334 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. M.L. Mazure, How to build all Chebyshevian spline spaces good for geometric design? Numer. Math. 119, 517–556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Piegl, W. Tiller, The NURBS Book (Monographs in Visual Communication), 2nd edn. (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  39. A. Quarteroni, Numerical Models for Differential Problems (Springer, Mailand, 2009)

    Book  MATH  Google Scholar 

  40. A. Reali, T.J.R. Hughes, An introduction to isogeometric collocation methods, in Isogeometric Methods for Numerical Simulation, ed. by G. Beer, S.P. Bordas (Springer, Wien, 2015)

    Google Scholar 

  41. F. Roman, C. Manni, H. Speleers, Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness. Numer. Math. 135, 169–216 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Roman, C. Manni, H. Speleers, Numerical approximation of GB-splines with a convolutional approach. Appl. Numer. Math. 116, 273–285 (2017)

    Article  MathSciNet  Google Scholar 

  43. L.L. Schumaker, Spline Functions: Basic Theory, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  44. L.L. Schumaker, L. Wang, Approximation power of polynomial splines on T-meshes. Comput. Aided Geom. Design 29, 599–612 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs. ACM Trans. Graph. 22, 477–484 (2003)

    Article  Google Scholar 

  46. H. Speleers, C. Manni, Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132, 155–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Wang, M. Fang, Unified and extended form of three types of splines. J. Comput. Appl. Math. 216, 498–508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by INdAM Gruppo Nazionale per il Calcolo Scientifico and by the MIUR “Futuro in Ricerca 2013” Program through the project “DREAMS” (RBFR13FBI3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Manni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Manni, C., Roman, F., Speleers, H. (2017). Generalized B-Splines in Isogeometric Analysis . In: Fasshauer, G., Schumaker, L. (eds) Approximation Theory XV: San Antonio 2016. AT 2016. Springer Proceedings in Mathematics & Statistics, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-319-59912-0_12

Download citation

Publish with us

Policies and ethics