Skip to main content

Pulsars: Celestial Clocks

  • Conference paper
  • First Online:

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 50))

Abstract

Pulsars are rapidly rotating neutron stars, with most of the known examples located within our Milky Way Galaxy. The class of “millisecond pulsars” (MSPs) have remarkably stable pulse periods, with a stability over long intervals comparable to that of the best atomic frequency standards. Timing observations of such pulsars in binary systems with another star have been used to make the most stringent tests of general relativity in strong gravitational fields. Observations of many MSPs, widely distributed across the sky and forming a “pulsar timing array” (PTA), have been used to set limits on the strength of the gravitational-wave background at nanohertz frequencies. These limits are beginning to constrain current ideas about the formation and evolution of supermassive binary black holes in the cores of distant galaxies. PTA observations can also be used to define a “pulsar timescale” that can limit or measure instabilities in terrestrial timescales over intervals of years and decades. Pulsar timescales form a useful “secondary standard” that is totally independent of terrestrial time and frequency standards and will be continuous for billions of years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For an up-to-date list of the currently known pulsars and their basic properties, see http://www.atnf.csiro.au/research/pulsar/psrcat and Ref. (Manchester et al. 2005).

  2. 2.

    The detection of binary orbit decay due to the emission of gravitational waves is generally termed an “indirect” detection of gravitational waves in contrast to the recent direct detection of a gravitational-wave burst by LIGO (Abbott et al. 2016).

  3. 3.

    The B pulsar disappeared from view in 2008, most likely because of spin-axis precession, but it is expected to return to view sometime in the next 20 years (Perera et al. 2010).

  4. 4.

    Timing residuals are the difference between observed and predicted ToAs, where the predictions are based on a model for the pulsar, including its astrometric parameters (position, proper motion, etc.) and timing parameters (pulse period, slow-down rate, dispersion measure and binary parameters if applicable) as well as the solar system ephemeris used in the analysis.

References

  • B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016)

    Article  ADS  Google Scholar 

  • Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S. Chamberlin, S. Chatterjee, B. Christy, J.M. Cordes, N. Cornish, et al., The NANOGrav nine-year data set: Observations, arrival time measurements, and analysis of 37 millisecond pulsars. Astrophys. J. 813, 65 (2015)

    Article  ADS  Google Scholar 

  • D. Bhattacharya, E.P.J. van den Heuvel, Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 203, 1–124 (1991)

    Article  ADS  Google Scholar 

  • M. Burgay, N. D’Amico, A. Possenti, R.N. Manchester, A.G. Lyne, B.C. Joshi, M.A. McLaughlin, M. Kramer, J.M. Sarkissian, et al., An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426, 531–533 (2003)

    Article  ADS  Google Scholar 

  • G. Desvignes, R.N. Caballero, L. Lentati, J.P.W. Verbiest, D.J. Champion, B.W. Stappers, G.H. Janssen, P. Lazarus, et al., High-precision timing of 42 millisecond pulsars with the European pulsar timing Ar- ray. MNRAS 458, 3341–3380 (2016)

    Article  ADS  Google Scholar 

  • W.M. Folkner, Planetary and Lunar Ephemeris DE418. Tech. Rep. IOM343R-07-005, NASA Jet Propulsion Laboratory (2007)

    Google Scholar 

  • W.M. Folkner, R.A. Park, R.A. Jacobson, Planetary Ephemeris DE435. Tech. Rep. IOM 392R-16-003, NASA Jet Propulsion Laboratory (2016)

    Google Scholar 

  • R.S. Foster, D.C. Backer, Constructing a pulsar timing array. Astrophys. J. 361, 300 (1990)

    Article  ADS  Google Scholar 

  • R.W. Hellings, G.S. Downs, Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. 265, L39 (1983)

    Article  ADS  Google Scholar 

  • G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer, M. Bailes, N.D.R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, I. Cognard, et al., The international pulsar timing array project: Using pulsars as a gravitational wave detector. Class. Quant. Grav 27(8), 084013 (2010)

    Article  ADS  Google Scholar 

  • G. Hobbs, W. Coles, R.N. Manchester, M.J. Keith, R.M. Shannon, D. Chen, M. Bailes, N.D.R. Bhat, et al., Development of a pulsar- based timescale. MNRAS 427, 2780–2787 (2012)

    Article  ADS  Google Scholar 

  • G.B. Hobbs, R.T. Edwards, R.N. Manchester, Tempo2, a new pulsar-timing package—I. An overview. MNRAS 369, 655–672 (2006)

    Article  ADS  Google Scholar 

  • R.A. Hulse, J.H. Taylor, Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53 (1975)

    Article  ADS  Google Scholar 

  • E. Keane, B. Bhattacharyya, M. Kramer, B. Stappers, E.F. Keane, B. Bhattacharyya, M. Kramer, B.W. Stappers, et al., A cosmic census of radio pulsars with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14), 40 (2015)

    Google Scholar 

  • B. Kocsis, A. Sesana, Gas-driven massive black hole binaries: Signatures in the nHz gravitational wave background. MNRAS 411, 1467–1479 (2011)

    Article  ADS  Google Scholar 

  • M. Kramer, I.H. Stairs, R.N. Manchester, M.A. McLaughlin, A.G. Lyne, R.D. Ferdman, M. Burgay, D.R. Lorimer, et al., Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006)

    Article  ADS  Google Scholar 

  • A.G. Lyne, M. Burgay, M. Kramer, A. Possenti, R.N. Manchester, F. Camilo, M.A. McLaughlin, D.R. Lorimer, et al., A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics. Science 303, 1153–1157 (2004)

    Article  ADS  Google Scholar 

  • R.N. Manchester, The international pulsar timing array. Class. Quant. Grav. 30(22), 224010 (2013)

    Article  ADS  Google Scholar 

  • R.N. Manchester, G. Hobbs, M. Bailes, W.A. Coles, W. van Straten, M.J. Keith, R.M. Shannon, et al., The parkes pulsar timing array project. PASA 30, e017 (2013)

    Article  ADS  Google Scholar 

  • R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005)

    Article  ADS  Google Scholar 

  • R. Nan, D. Li, C. Jin, Q. Wang, L. Zhu, W. Zhu, H. Zhang, Y. Yue, L. Qian, The five-hundred-meter aperture spherical radio telescope (FAST) project. Int. J. Mod. Phys. D 20, 989–1024 (2011)

    Article  ADS  Google Scholar 

  • S. Peil, J.L. Hanssen, T.B. Swanson, J. Taylor, C.R. Ekstrom, Evaluation of long term performance of continuously running rubidium fountains. Metrologia 51, 263–269 (2014)

    Article  ADS  Google Scholar 

  • B.B.P. Perera, M.A. McLaughlin, M. Kramer, I.H. Stairs, R.D. Ferdman, P.C.C. Freire, A. Possenti, R.P. Breton, et al., The evolution of PSR J0737−3039B and a model for relativistic spin precession. Astrophys. J. 721, 1193–1205 (2010)

    Article  ADS  Google Scholar 

  • G. Petit, in Proc. EFTF-FCS’07 Meeting, Long-term stability and accuracy of TAI (revisited) (2007), pp. 391–394

    Google Scholar 

  • E.S. Phinney, A practical theorem on gravitational wave backgrounds. ArXiv:astro-ph/0108028 (2001)

    Google Scholar 

  • V. Ravi, J.S.B. Wyithe, R.M. Shannon, G. Hobbs, R.N. Manchester, Binary super- massive black hole environments diminish the gravitational wave signal in the pulsar timing band. MNRAS 442, 56–68 (2014)

    Article  ADS  Google Scholar 

  • D.J. Reardon, G. Hobbs, W. Coles, Y. Levin, M.J. Keith, M. Bailes, N.D.R. Bhat, S. Burke-Spolaor, et al., Timing analysis for 20 millisecond pulsars in the parkes pulsar timing array. MNRAS 455, 1751–1769 (2016)

    Article  ADS  Google Scholar 

  • A. Sesana, F. Shankar, M. Bernardi, R.K. Sheth, Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays. ArXiv:1603.09348 (2016)

    Google Scholar 

  • R.M. Shannon, J.M. Cordes, Assessing the role of spin noise in the precision timing of millisecond pulsars. Astrophys. J. 725, 1607–1619 (2010)

    Article  ADS  Google Scholar 

  • R.M. Shannon, V. Ravi, L.T. Lentati, P.D. Lasky, G. Hobbs, M. Kerr, R.N. Manchester, W.A. Coles, et al., Gravitational waves from binary supermassive black holes missing in pulsar observations. Science 349, 1522–1525 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.H. Taylor, L.A. Fowler, P.M. McCulloch, Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature 277, 437 (1979)

    Article  ADS  Google Scholar 

  • J.P.W. Verbiest, L. Lentati, G. Hobbs, R. van Haasteren, P.B. Demorest, G.H. Janssen, J.B. Wang, G. Desvignes, et al., The international pulsar timing array: first data release. MNRAS 458, 1267–1288 (2016)

    Article  ADS  Google Scholar 

  • J.M. Weisberg, D.J. Nice, J.H. Taylor, Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Demetrios Matsakis for providing us with the 4-year data sets for the rubidium fountain clocks at US Naval Observatory. We also thank Michael Kramer and Ryan Shannon for providing Figs. 30.2 and 30.3, respectively. The IPTA is a consortium of three PTAs, and we acknowledge the efforts of all members of these PTAs in the creation of the IPTA data sets. The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Manchester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Manchester, R.N., Guo, L., Hobbs, G., Coles, W.A. (2017). Pulsars: Celestial Clocks. In: Arias, E., Combrinck, L., Gabor, P., Hohenkerk, C., Seidelmann, P. (eds) The Science of Time 2016. Astrophysics and Space Science Proceedings, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-59909-0_30

Download citation

Publish with us

Policies and ethics