Skip to main content

Processing and Characterization of Coating and Thin Film Materials

  • Chapter
  • First Online:

Abstract

Coatings and thin film materials are employed in many different industrial fields for decades, mainly for protective purposes. This large experience provokes that, currently, a wide variety of technologies for preparation and characterization of these materials are available. Particularly, focusing on energy and environmental applications, three main film types can be distinguished: (1) materials with catalytic activity for hydrogen production, (2) membranes for hydrogen separation or CO2 capture, and (3) coatings for some specific fuel cell components. Membranes are especially relevant for hydrogen separation from other gases after the production unit or combining both production and separation steps in a unique equipment, the membrane reactor. The last case represents a significant advance in terms of process intensification, increasing the hydrogen production rate with a high purity and saving costs. In the last years, the relevance of these membrane materials has significantly increased, as can be denoted by the large number of published manuscripts in indexed scientific journals of high impact. In this context, this chapter summarizes the main advances in thin film membranes towards energy and environmental applications, including both preparation strategies and the most common characterization techniques. The production of all these thin films, independently of the particular application, can be carried out by different physical-chemical alternatives such as Sol–Gel methods, Electrodeposition, Electroless Plating, Physical Vapor Deposition, Chemical Vapor Deposition, Atomic Layer Deposition, or Molecular Beam Epitaxy, achieving thicknesses ranged from the nanometer scale to some microns. Each technique presents advantages and disadvantages that have to be taken into account for final applications. Moreover, the structure of the film should also be considered, being possible to distinguish amorphous or crystalline materials. All these films, independently of the composition, structure, or production technique, are usually prepared over a substrate material. Thus, the original coating surface properties can affect in a significant grade to the final properties of the film and many researchers focus their efforts on studying these effects and developing new strategies to improve the final quality of films in terms of homogeneity, thickness reduction, thermal and mechanical resistance, and adherence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.N. Paglieri, J.D. Way, Innovations in palladium membrane research. Sep Purif Methods 31(1), 1–169 (2002)

    Article  Google Scholar 

  2. S. Tosti, Overview of Pd-based membranes for producing pure hydrogen and state of art at ENEA laboratories. Int. J. Hydrog. Energy 35, 12650–12659 (2010)

    Article  Google Scholar 

  3. S. Tosti, C. Rizzello, Membranes for Nuclear Power Applications, in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications, ed. by A. Basile, S. Nunes (Eds), (Woodhead Publishing Series in Energy, Cambridge, 2011), pp. 769–791

    Google Scholar 

  4. S. Tosti, A. Basile, L. Bettinali, F. Borgognoni, F. Gallucci, C. Rizzello, Design and process study of Pd membrane reactors. Int. J. Hydrog. Energy 33(19), 5098–5105 (2008)

    Article  Google Scholar 

  5. A. Santucci, F. Borgognoni, M. Vadrucci, S. Tosti, Testing of dense Pd-Ag tubes: effect of pressure and membrane thickness on the hydrogen permeability. J. Membr. Sci. 444, 378–383 (2013)

    Article  Google Scholar 

  6. S. Tosti, Supported and laminated Pd-based metallic membranes. Int. J. Hydrog. Energy 28(12), 1445–1454 (2003)

    Article  Google Scholar 

  7. A. Basile, F. Gallucci, S. Tosti, Synthesis, characterization, and applications of palladium membranes. Membr. Sci. Technol. 13, 255–323 (2008)

    Article  Google Scholar 

  8. Y.S. Cheng, K.L. Yeung, Palladium-silver composite membranes by electroless plating technique. J. Membr. Sci. 158(1), 127–141 (1999)

    Article  Google Scholar 

  9. E. Fernandez, J.A. Medrano, J. Melendez, M. Parco, J.L. Viviente, M. van Sint Annaland, D.A. Pacheco Tanaka, Preparation and characterization of metallic supported thin Pd-Ag membranes for hydrogen separation. Chem. Eng. J. 305, 182–190 (2016)

    Article  Google Scholar 

  10. J.A. Medrano, E. Fernandez, J. Melendez, M. Parco, D.A.P. Tanaka, M. van Sint Annaland, F. Gallucci, Pd-based metallic supported membranes: high-temperature stability and fluidized bed reactor testing. Int. J. Hydrog. Energy 41(20), 8706–8718 (2016)

    Article  Google Scholar 

  11. T. Nakajima, T. Kume, Y. Ikeda, M. Shiraki, H. Kurokawa, T. Iseki, M. Ito, Effect of concentration polarization on hydrogen production performance of ceramic-supported Pd membrane module. Int. J. Hydrog. Energy 40(35), 11451–11456 (2015)

    Article  Google Scholar 

  12. H. Richter, Large-Scale Ceramic Support Fabrication for Palladium Membranes, in Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications, ed. by A. Doukelis, K. Panopoulos, A. Koumanakos, E. Kakaras (Eds), (Woodhead Publishing, Cambridge, 2015), pp. 69–82

    Google Scholar 

  13. I. Pinnau, Membrane Separations: Membrane Preparation, in Encyclopedia of Separation Science, ed. by C. Poole, M. Cooke (Eds), (Elsevier, Oxford, 2007), pp. 1755–1764

    Google Scholar 

  14. D. Pizzi, R. Worth, B.M. Giacinti, G.C. Sarti, K. Noda, Hydrogen permeability of 2.5μm palladium-silver membranes deposited on ceramic supports. J. Membr. Sci. 325(1), 446–453 (2008)

    Article  Google Scholar 

  15. J. Catalano, B.M. Giacinti, G.C. Sarti, Influence of the gas phase resistance on hydrogen flux through thin palladium-silver membranes. J. Membr. Sci. 339(1), 57–67 (2009)

    Article  Google Scholar 

  16. Ø. Hatlevik, S.K. Gade, M.K. Keeling, P.M. Thoen, A.P. Davidson, J.D. Way, Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep. Purif. Technol. 73(1), 59–64 (2010)

    Article  Google Scholar 

  17. S. Yun, O.S. Ted, Correlations in palladium membranes for hydrogen separation: a review. J. Membr. Sci. 375(1–2), 28–45 (2011)

    Article  Google Scholar 

  18. P. Pinacci, A. Basile, Palladium-Based Composite Membranes for Hydrogen Separation in Membrane Reactors, in Handbook of Membrane Reactors, Fundamental Materials Science, Design and Optimisation, ed. by A. Basile (Ed), vol. 1, (Woodhead Publishing Series in Energy, 2013), pp. 149–182

    Google Scholar 

  19. P.P. Mardilovich, Y. She, Y.H. Ma, Defect-free palladium membranes on porous stainless-steel support. AIChE J. 44(2), 310–322 (1998)

    Article  Google Scholar 

  20. A. Li, J.R. Grace, C.J. Lim, Preparation of thin Pd-based composite membrane on planar metallic substrate: part I: pre-treatment of porous stainless steel substrate. J. Membr. Sci. 298(1), 175–181 (2007)

    Article  Google Scholar 

  21. S.S. Kim, N. Xu, A. Li, J.R. Grace, C.J. Lim, S.-K. Ryi, Development of a new porous metal support based on nickel and its application for Pd based composite membranes. Int. J. Hydrog. Energy 40(8), 3520–3527 (2015)

    Article  Google Scholar 

  22. C. Lee, A. Kim, J. Kim, Electrochemically etched porous stainless steel for enhanced oil retention. Surf. Coat. Technol. 264(25), 127–131 (2015). https://doi.org/10.1016/j.surfcoat.2015.01.004

  23. N. Jemaa, J. Shu, S. Kaliaguine, P.A. Grandjean, Thin palladium film formation on shot peening modified porous stainless steel substrates. Ind. Eng. Chem. Res. 35, 973–977 (1996)

    Article  Google Scholar 

  24. V. Jayaraman, Y.S. Lin, M. Pakala, R.Y. Lin, Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. J. Membr. Sci. 99(1), 89–100 (1995)

    Article  Google Scholar 

  25. S.-K. Ryi, J.-S. Park, S.-H. Kim, D.-W. Kim, K.-I. Cho, Formation of a defect-free Pd-Cu-Ni ternary alloy membrane on a polished porous nickel support (PNS). J. Membr. Sci. 318(1), 346–354 (2008)

    Article  Google Scholar 

  26. P. Pinacci, F. Drago, Influence of the support on permeation of palladium composite membranes in presence of sweep gas. Catal. Today 193(1), 186–193 (2012)

    Article  Google Scholar 

  27. D. Alique, Modification of porous stainless-steel support for the preparation of Pd membrane. Network Young MemBrains 8th Meeting. Rende, Italy, 2006, pp. 81–82

    Google Scholar 

  28. S.-K. Ryi, J.-S. Park, K.-R. Hwang, C.-B. Lee, S.-W. Lee, Repair of Pd-based composite membrane by polishing treatment. Int. J. Hydrog. Energy 36(21), 13776–13780 (2011)

    Article  Google Scholar 

  29. Y. Huang, R. Dittmeyer, Preparation of thin palladium membranes on a porous support with rough surface. J. Membr. Sci. 302(1), 160–170 (2007)

    Article  Google Scholar 

  30. Y. Huang, X. Li, Y. Fan, N. Xu, Palladium-based composite membranes: Principle, preparation and characterization. Prog. Chem. 18, 230–238 (2006)

    Google Scholar 

  31. J.P. Collins, J.D. Way, Catalytic decomposition of ammonia in a membrane reactor. J. Membr. Sci. 96(3), 259–274 (1994)

    Article  Google Scholar 

  32. Y. Huang, S. Shu, Z. Lu, Y. Fan, Characterization of the adhesion of thin palladium membranes supported on tubular porous ceramics. Thin Solid Films 515(13), 5233–5240 (2007)

    Article  Google Scholar 

  33. D. Wang, J. Tong, H. Xu, Y. Matsumura, Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide. Catal. Today 93–95, 689–693 (2004)

    Article  Google Scholar 

  34. S.-E. Nam, K.-H. Lee, Preparation and characterization of palladium alloy composite membranes with a diffusion barrier for hydrogen separation. Ind. Eng. Chem. Res. 44(1), 100–105 (2005)

    Article  Google Scholar 

  35. J. Coronas, Santamarıa J. Catalytic reactors based on porous ceramic membranes. Catal. Today 51(3), 377–389 (1999)

    Article  Google Scholar 

  36. H. Lim, S.T. Oyama, Hydrogen selective thin palladium-copper composite membranes on alumina supports. J. Membr. Sci. 378(1), 179–185 (2011)

    Article  Google Scholar 

  37. L. Zheng, H. Li, H. Xu, “Defect-free” interlayer with a smooth surface and controlled pore-mouth size for thin and thermally stable Pd composite membranes. Int. J. Hydrog. Energy 41(2), 1002–1009 (2016)

    Article  Google Scholar 

  38. X. Hu, W. Chen, Y. Huang, Fabrication of Pd/ceramic membranes for hydrogen separation based on low-cost macroporous ceramics with pencil coating. Int. J. Hydrog. Energy 35(15), 7803–7808 (2010)

    Article  Google Scholar 

  39. H.-B. Zhao, K. Pflanz, J.-H. Gu, A.-W. Li, N. Stroh, H. Brunner, G.-X. Xiong, Preparation of palladium composite membranes by modified electroless plating procedure. J. Membr. Sci. 142(2), 147–157 (1998)

    Article  Google Scholar 

  40. D.A. Pacheco Tanaka, M.A.L. Tanco, J. Okazaki, Y. Wakui, F. Mizukami, T.M. Suzuki, Preparation of “pore-fill” type Pd-YSZ-γ-Al2O3 composite membrane supported on α-Al2O3 tube for hydrogen separation. J. Membr. Sci. 320(1–2), 436–441 (2008)

    Article  Google Scholar 

  41. A. Arratibel, U. Astobieta, D.A. Pacheco Tanaka, M. Van Sint Annaland, F. Gallucci, N2, He and CO2 diffusion mechanism through nanoporous YSZ/γ-Al2O3 layers and their use in a pore-filled membrane for hydrogen membrane reactors. Int. J. Hydrog. Energy 41(20), 8732–8744 (2016)

    Article  Google Scholar 

  42. D. Yepes, L.M. Cornaglia, S. Irusta, E.A. Lombardo, Different oxides used as diffusion barriers in composite hydrogen permeable membranes. J. Membr. Sci. 274(1–2), 92–101 (2006)

    Article  Google Scholar 

  43. R. Sanz, J.A. Calles, D. Alique, L. Furones, H2 production via water gas shift in a composite Pd membrane reactor prepared by the pore-plating method. Int. J. Hydrog. Energy 39(9), 4739–4748 (2014)

    Article  Google Scholar 

  44. Y.H. Ma, B.C. Akis, M.E. Ayturk, F. Guazzone, E.E. Engwall, I.P. Mardilovich, Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes. Ind. Eng. Chem. Res. 43(12), 2936–2945 (2004)

    Article  Google Scholar 

  45. Y.H. Ma, P.P. Mardilovich, Y. She, U.S. Patent 6,152,987

    Google Scholar 

  46. F. Guazzone, E.E. Engwall, Y.H. Ma, Effects of surface activity, defects and mass transfer on hydrogen permeance and n-value in composite palladium-porous stainless steel membranes. Catal. Today 118(1–2), 24–31 (2006)

    Article  Google Scholar 

  47. C. Mateos-Pedrero, M.A. Soria, I. Rodríguez-Ramos, A. Guerrero-Ruiz, Modifications of porous stainless steel previous to the synthesis of Pd membranes. Stud. Surf. Sci. Catal. 175, 779–783 (2010)

    Article  Google Scholar 

  48. G.T. Van, F. Hauler, M. Bram, W.A. Meulenberg, H.P. Buchkremer, Synthesis and characterization of hydrogen-selective sol-gel SiO2 membranes supported on ceramic and stainless steel supports. Sep. Purif. Technol. 121, 20–29 (2014)

    Article  Google Scholar 

  49. M. Kanezashi, D. Fuchigami, T. Yoshioka, T. Tsuru, Control of Pd dispersion in sol-gel-derived amorphous silica membranes for hydrogen separation at high temperatures. J. Membr. Sci. 439, 78–86 (2013)

    Article  Google Scholar 

  50. S.-E. Nam, K.-H. Lee, Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier. J. Membr. Sci. 192(1), 177–185 (2001)

    Article  MathSciNet  Google Scholar 

  51. J.A. Calles, R. Sanz, D. Alique, Influence of the type of siliceous material used as intermediate layer in the preparation of hydrogen selective palladium composite membranes over a porous stainless steel support. Int. J. Hydrog. Energy 37(7), 6030–6042 (2012)

    Article  Google Scholar 

  52. L. Zheng, H. Li, T. Xu, F. Bao, H. Xu, Defect size analysis approach combined with silicate gel/ceramic particles for defect repair of Pd composite membranes. Int. J. Hydrog. Energy 41(41), 18522–18532 (2016)

    Article  Google Scholar 

  53. M. Broglia, P. Pinacci, M. Radaelli, A. Bottino, G. Capannelli, A. Comite, G. Vanacore, M. Zani, Synthesis and characterization of Pd membranes on alumina-modified porous stainless steel supports. Desalination 245(1–3), 508–515 (2009)

    Article  Google Scholar 

  54. Y.-H. Chi, P.-S. Yen, M.-S. Jeng, S.-T. Ko, T.-C. Lee, Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method. Int. J. Hydrog. Energy 35(12), 6303–6310 (2010)

    Article  Google Scholar 

  55. C.-B. Lee, S.-W. Lee, J.-S. Park, S.-K. Ryi, D.-W. Lee, K.-R. Hwang, S.-H. Kim, Ceramics used as intermetallic diffusion barriers in Pd-based composite membranes sputtered on porous nickel supports. J. Alloys Compd. 578, 425–430 (2013)

    Article  Google Scholar 

  56. A. Bottino, M. Broglia, G. Capannelli, A. Comite, P. Pinacci, M. Scrignari, F. Azzurri, Sol-gel synthesis of thin alumina layers on porous stainless steel supports for high temperature palladium membranes. Int. J. Hydrog. Energy 39(9), 4717–4724 (2014)

    Article  Google Scholar 

  57. G.T.P. Mabande, G. Pradhan, W. Schwieger, M. Hanebuth, R. Dittmeyer, T. Selvam, A. Zampieri, H. Baser, R. Herrmann, A study of Silicalite-1 and Al-ZSM-5 membrane synthesis on stainless steel supports. Microporous Mesoporous Mater. 75(3), 209–220 (2004)

    Article  Google Scholar 

  58. M.L. Bosko, F. Ojeda, E.A. Lombardo, L.M. Cornaglia, NaA zeolite as an effective diffusion barrier in composite Pd/PSS membranes. J. Membr. Sci. 331(1), 57–65 (2009)

    Article  Google Scholar 

  59. M.M. Dehghani, P. Jafari, M. Irani, Preparation of Pd-based membranes on Pd/TiO2 modified NaX/PSS substrate for hydrogen separation: design and optimization. Microporous Mesoporous Mater. 226, 369–377 (2016)

    Article  Google Scholar 

  60. Y. Guo, Y. Jin, H. Wu, L. Zhou, Q. Chen, X. Zhang, X. Li, Preparation of palladium membrane on Pd/silicalite-1 zeolite particles modified macroporous alumina substrate for hydrogen separation. Int. J. Hydrog. Energy 39(36), 21044–21052 (2014)

    Article  Google Scholar 

  61. Y. Guo, Y.J. Jin, H.M. Wu, D.X. Li, L.D. Zhou, Q.Q. Chen, X.F. Zhang, Preparation of Pd composite membrane and its surface morphological changes after elevating temperature in different Atmoshphere. Mater Process Technol 941, 1602–1605 (2014)

    Google Scholar 

  62. X. Wang, X. Tan, B. Meng, X. Zhang, Q. Liang, H. Pan, S. Liu, TS-1 zeolite as an effective diffusion barrier for highly stable Pd membrane supported on macroporous α-Al2O3 tube. RSC Adv. 3(14), 4821–4834 (2013)

    Article  Google Scholar 

  63. J. Yu, C. Qi, J. Zhang, C. Bao, H. Xu, Synthesis of a zeolite membrane as a protective layer on a metallic Pd composite membrane for hydrogen purification. J. Mater. Chem. A 3(9), 5000–5006 (2015)

    Article  Google Scholar 

  64. K. Sato, M. Natsui, Y. Hasegawa, Preparation of double layer membrane combined with palladium metal and FAU zeolite for catalytic membrane reactor. Mater. Trans. JIM 56(4), 473–478 (2015)

    Article  Google Scholar 

  65. S. Abate, U. Díaz, A. Prieto, S. Gentiluomo, M. Palomino, S. Perathoner, A. Corma, G. Centi, Influence of zeolite protective overlayer on the performances of Pd thin film membrane on tubular asymmetric alumina supports. Ind. Eng. Chem. Res. 55(17), 4948–4959 (2016)

    Article  Google Scholar 

  66. J. Tong, Y. Matsumura, H. Suda, K. Haraya, Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane. Sep. Purif. Technol. 46(1), 1–10 (2005)

    Article  Google Scholar 

  67. A. Qiao, K. Zhang, Y. Tian, L. Xie, H. Luo, Y.S. Lin, Y. Li, Hydrogen separation through palladium-copper membranes on porous stainless steel with sol-gel derived ceria as diffusion barrier. Fuel 89(6), 1274–1279 (2010)

    Article  Google Scholar 

  68. H.S. Gao, J.Y. Lin, Y. Li, B. Zhang, Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel. J. Membr. Sci. 265(1), 142–152 (2005)

    Article  Google Scholar 

  69. A. Tarditi, C. Gerboni, L. Cornaglia, PdAu membranes supported on top of vacuum-assisted ZrO2-modified porous stainless steel substrates. J. Membr. Sci. 428, 1–10 (2013)

    Article  Google Scholar 

  70. S.-K. Ryi, S.-W. Lee, D.-K. Oh, B.-S. Seo, J.-W. Park, J.-S. Park, D.-W. Lee, S.S. Kim, Electroless plating of Pd after shielding the bottom of planar porous stainless steel for a highly stable hydrogen selective membrane. J. Membr. Sci. 467, 93–99 (2014)

    Article  Google Scholar 

  71. K. Zhang, H. Gao, Z. Rui, P. Liu, Y. Li, Y.S. Lin, High-temperature stability of palladium membranes on porous metal supports with different intermediate layers. Ind. Eng. Chem. Res. 48(4), 1880–1886 (2009)

    Article  Google Scholar 

  72. R. Sanz, J.A. Calles, D. Alique, L. Furones, S. Ordóñez, P. Marín, P. Corengia, E. Fernandez, Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. Int. J. Hydrog. Energy 36(24), 15783–15793 (2011)

    Article  Google Scholar 

  73. J.A. Calles, R. Sanz, D. Alique, L. Furones, Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane. Int. J. Hydrog. Energy 39(3), 1398–1409 (2014)

    Article  Google Scholar 

  74. J. Tong, R. Shirai, Y. Kashima, Y. Matsumura, Preparation of a pinhole-free Pd-Ag membrane on a porous metal support for pure hydrogen separation. J. Membr. Sci. 260(1), 84–89 (2005)

    Article  Google Scholar 

  75. M.E. Ayturk, I.P. Mardilovich, E.E. Engwall, Y.H. Ma, Synthesis of composite Pd-porous stainless steel (PSS) membranes with a Pd/Ag intermetallic diffusion barrier. J. Membr. Sci. 285(1), 385–394 (2006)

    Article  Google Scholar 

  76. J.-H. Lee, J.-Y. Han, K.-M. Kim, S.-K. Ryi, D.-W. Kim, Development of homogeneous Pd-Ag alloy membrane formed on porous stainless steel by multi-layered films and Ag-upfilling heat treatment. J. Membr. Sci. 492, 242–248 (2015)

    Article  Google Scholar 

  77. Y.-H. Chi, J.-Y. Uan, M.-C. Lin, Y.-L. Lin, J.-H. Huang, Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling. Int. J. Hydrog. Energy 38(31), 13734–13741 (2013)

    Article  Google Scholar 

  78. M. Pujari, A. Agarwal, R. Uppaluri, A. Verma, Role of electroless nickel diffusion barrier on the combinatorial plating characteristics of dense Pd/Ni/PSS composite membranes. Appl. Surf. Sci. 305, 658–664 (2014)

    Article  Google Scholar 

  79. S. Nayebossadri, S. Fletcher, J.D. Speight, D. Book, Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes. J. Membr. Sci. 515, 22–28 (2016)

    Article  Google Scholar 

  80. T. Nozaki, Y. Hatano, E. Yamakawa, A. Hachikawa, K. Ichinose, Improvement of high temperature stability of Pd coating on Ta by HfN intermediate layer. Int. J. Hydrog. Energy 35(22), 12454–12460 (2010)

    Article  Google Scholar 

  81. T. Nozaki, Y. Hatano, Hydrogen permeation through a Pd/Ta composite membrane with a HfN intermediate layer. Int. J. Hydrog. Energy 38(27), 11983–11987 (2013)

    Article  Google Scholar 

  82. J. Tong, H. Suda, K. Haraya, Y. Matsumura, A novel method for the preparation of thin dense Pd membrane on macroporous stainless steel tube filter. J. Membr. Sci. 260(1), 10–18 (2005)

    Article  Google Scholar 

  83. J. Tong, L. Su, K. Haraya, H. Suda, Thin Pd membrane on α-Al2O3 hollow fiber substrate without any interlayer by electroless plating combined with embedding Pd catalyst in polymer template. J. Membr. Sci. 310(1–2), 93–101 (2008)

    Article  Google Scholar 

  84. B.D. Adams, A. Chen, The role of palladium in a hydrogen economy. Mater. Today 14(6), 282–289 (2001)

    Article  Google Scholar 

  85. N.A. Al-Mufachi, N.V. Rees, R. Steinberger-Wilkens, Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew. Sust. Energ. Rev. 47, 540–551 (2015)

    Article  Google Scholar 

  86. U. Balachandran, T.H. Lee, C.Y. Park, J.E. Emerson, J.J. Picciolo, S.E. Dorris, Dense cermet membranes for hydrogen separation. Sep. Purif. Technol. 121, 54–59 (2014)

    Article  Google Scholar 

  87. J. Boon, J.A.Z. Pieterse, F.P.F. van Berkel, Y.C. van Delft, M. van Sint Annaland, Hydrogen permeation through palladium membranes and inhibition by carbon monoxide, carbon dioxide, and steam. J. Membr. Sci. 496, 344–358 (2015)

    Article  Google Scholar 

  88. J. Catalano, M.G. Baschetti, G.C. Sarti, Hydrogen permeation in palladium-based membranes in the presence of carbon monoxide. J. Membr. Sci. 362(1–2), 221–233 (2010)

    Article  Google Scholar 

  89. L. Cornaglia, J. Múnera, E. Lombardo, Recent advances in catalysts, palladium alloys and high temperature WGS membrane reactors: a review. Int. J. Hydrog. Energy 40(8), 3423–3437 (2015)

    Article  Google Scholar 

  90. Z.W. Dunbar, Hydrogen purification of synthetic water gas shift gases using microstructured palladium membranes. J. Power Sources 297, 525–533 (2015)

    Article  Google Scholar 

  91. G.Q. Lu, J.C.D. da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification: a critical review and perspective. J. Colloid Interface Sci. 314(2), 589–603 (2007)

    Article  Google Scholar 

  92. F.R. García-García, L. Torrente-Murciano, D. Chadwick, K. Li, Hollow fibre membrane reactors for high H2 yields in the WGS reaction. J. Membr. Sci. 405–406, 30–37 (2012)

    Article  Google Scholar 

  93. J. Melendez, E. Fernandez, F. Gallucci, M. van Sint Annaland, P.L. Arias, D.A.P. Tanaka, Preparation and characterization of ceramic supported ultra-thin (~1 μm) Pd-Ag membranes. J. Membr. Sci. 528, 12–23 (2017)

    Article  Google Scholar 

  94. G. Zeng, A. Goldbach, H. Xu, Defect sealing in Pd membranes via point plating. J. Membr. Sci. 328(1–2), 6–10 (2009)

    Article  Google Scholar 

  95. R. Sanz, J.A. Calles, D. Alique, L. Furones, New synthesis method of Pd membranes over tubular PSS supports via “pore-plating” for hydrogen separation processes. Int. J. Hydrog. Energy 37(23), 18476–18485 (2012)

    Article  Google Scholar 

  96. S.K. Gade, S.J. DeVoss, K.E. Coulter, S.N. Paglieri, G.O. Alptekin, J.D. Way, Palladium-gold membranes in mixed gas streams with hydrogen sulfide: effect of alloy content and fabrication technique. J. Membr. Sci. 378(1–2), 35–41 (2011)

    Article  Google Scholar 

  97. A.E. Lewis, H. Zhao, H. Syed, C.A. Wolden, J.D. Way, PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide. J. Membr. Sci. 465, 167–176 (2014)

    Article  Google Scholar 

  98. M. Voldsund, K. Jordal, R. Anantharaman, Hydrogen production with CO2 capture. Int. J. Hydrog. Energy 41(9), 4969–4992 (2016)

    Article  Google Scholar 

  99. D.M. Mattox, Vacuum Evaporation and Vacuum Deposition, in Handbook of Physical Vapor Deposition (PVD) Processing, (Elsevier, Oxford, 2010), pp. 195–235

    Chapter  Google Scholar 

  100. R. Checchetto, N. Bazzanella, B. Patton, A. Miotello, Palladium membranes prepared by r.f. magnetron sputtering for hydrogen purification. Surf. Coat. Technol. 177, 73–79 (2004)

    Article  Google Scholar 

  101. B. Navinšek, P. Panjan, I. Milošev, PVD coatings as an environmentally clean alternative to electroplating and electroless processes. Surf. Coat. Technol. 116, 476–487 (1999)

    Article  Google Scholar 

  102. T.A. Peters, M. Stange, R. Bredesen, Fabrication of palladium-based membranes by magnetron sputtering, in Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications, ed. by A. Doukelis, K. Panopoulos, A. Koumanakos, E. Kakara (Eds), (Woodhead Publishing, 2015), pp. 25–41

    Google Scholar 

  103. W.M. Tucho, H.J. Venvik, M. Stange, J.C. Walmsley, R. Holmestad, R. Bredesen, Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes. Sep. Purif. Technol. 68(3), 403–410 (2009)

    Article  Google Scholar 

  104. A.L. Mejdell, T.A. Peters, M. Stange, H.J. Venvik, R. Bredesen, Performance and application of thin Pd-alloy hydrogen separation membranes in different configurations. J. Taiwan Inst. Chem. Eng. 40(3), 253–259 (2009)

    Article  Google Scholar 

  105. T.A. Peters, M. Stange, R. Bredesen, On the high pressure performance of thin supported Pd-23%Ag membranes—evidence of ultrahigh hydrogen flux after air treatment. J. Membr. Sci. 378(1–2), 28–34 (2011)

    Article  Google Scholar 

  106. T.A. Peters, T. Kaleta, M. Stange, R. Bredesen, Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catal. Today 193(1), 8–19 (2012)

    Article  Google Scholar 

  107. T.A. Peters, T. Kaleta, M. Stange, R. Bredesen, Development of ternary Pd-Ag-TM alloy membranes with improved sulphur tolerance. J. Membr. Sci. 429, 448–458 (2013)

    Article  Google Scholar 

  108. A. Li, J.R. Grace, C.J. Lim, Preparation of thin Pd-based composite membrane on planar metallic substrate: part II. Preparation of membranes by electroless plating and characterization. J. Membr. Sci. 306(1–2), 159–165 (2007)

    Article  Google Scholar 

  109. B. Zornoza, C. Casado, A. Navajas, Advances in Hydrogen Separation and Purification with Membrane Technology, in Renewable Hydrogen Technologies, ed. by L. M. Gandía, G. Arzamendi, P. M. Diéguez (Eds), (Elsevier, Amsterdam, 2013), pp. 245–268

    Google Scholar 

  110. M. De Falco, G. Iaquaniello, E. Palo, B. Cucchiella, V. Palma, P. Ciambelli, Palladium-Based Membranes for Hydrogen Separation: Preparation, Economic Analysis and Coupling with a Water Gas Shift Reactor, in Handbook of Membrane Reactors, ed. by A. Basile (Ed), (Woodhead Publishing, 2013), pp. 456–486

    Google Scholar 

  111. M.J. den Exter, The Use of Electroless Plating as a Deposition Technology in the Fabrication of Palladium-Based Membranes, in Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications, Woodhead Publishing, ed. by A. Doukelis, K. Panopoulos, A. Koumanakos, E. Kakaras (Eds), vol. 2015, (2015), pp. 43–67

    Google Scholar 

  112. D.A.P. Tanaka, J. Okazaki, M.A.L. Tanco, T.M. Suzuki, Fabrication of Supported Palladium Alloy Membranes Using Electroless Plating Techniques, in Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications, Woodhead Publishing, ed. by A. Doukelis, K. Panopoulos, A. Koumanakos, E. Kakaras (Eds), vol. 2015, (2015), pp. 83–99

    Google Scholar 

  113. A. Basile, J. Tong, P. Millet, Inorganic Membrane Reactors for Hydrogen Production: An Overview with Particular Emphasis on Dense Metallic Membrane Materials, in Handbook of Membrane Reactors, Woodhead Publishing, ed. by A. Basile (Ed), vol. 2013, (2013), pp. 42–148

    Google Scholar 

  114. Y.S. Cheng, K.L. Yeung, Effects of electroless plating chemistry on the synthesis of palladium membranes. J. Membr. Sci. 182(1–2), 195–203 (2001)

    Article  Google Scholar 

  115. J. Shu, B.P.A. Grandjean, E. Ghali, S. Kaliaguine, Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating. J. Membr. Sci. 77(2–3), 181–195 (1993)

    Article  Google Scholar 

  116. K.S. Rothenberger, A.V. Cugini, B.H. Howard, R.P. Killmeyer, M.V. Ciocco, B.D. Morreale, R.M. Enick, F. Bustamante, I.P. Mardilovich, Y.H. Ma, High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating. J. Membr. Sci. 244(1–2), 55–68 (2004)

    Article  Google Scholar 

  117. L. Wei, J. Yu, X. Hu, R. Wang, Y. Huang, Effects of Sn residue on the high temperature stability of the H2-permeable palladium membranes prepared by electroless plating on Al2O3 substrate after SnCl2-PdCl2 process: a case study. Chin. J. Chem. Eng. 24(9), 1154–1160 (2016)

    Article  Google Scholar 

  118. F. Touyeras, J.Y. Hihn, S. Delalande, R. Viennet, M.L. Doche, Ultrasound influence on the activation step before electroless coating. Ultrason. Sonochem. 10(6), 363–368 (2003)

    Article  Google Scholar 

  119. R. Sanz, J.A. Calles, S. Ordóñez, P. Marín, D. Alique, L. Furones, Modelling and simulation of permeation behaviour on Pd/PSS composite membranes prepared by “pore-plating” method. J. Membr. Sci. 446, 410–421 (2013)

    Article  Google Scholar 

  120. M. Seshimo, M. Ozawa, M. Sone, M. Sakurai, H. Kameyama, Fabrication of a novel Pd/γ-alumina graded membrane by electroless plating on nanoporous γ-alumina. J. Membr. Sci. 324(1–2), 181–187 (2008)

    Article  Google Scholar 

  121. S. Uemiya, N. Sato, H. Ando, E. Kikuchi, The water gas shift reaction assisted by a palladium membrane reactor. Ind. Eng. Chem. Res. 30(3), 585–589 (1991)

    Article  Google Scholar 

  122. K.L. Yeung, J.M. Sebastian, A. Varma, Novel preparation of Pd/Vycor composite membranes. Catal. Today 25(3–4), 231–236 (1995)

    Article  Google Scholar 

  123. R.S. Souleimanova, A.S. Mukasyan, A. Varma, Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique. J. Membr. Sci. 166(2), 249–257 (2000)

    Article  Google Scholar 

  124. A. Li, W. Liang, R. Hughes, Characterisation and permeation of palladium/stainless steel composite membranes. J. Membr. Sci. 149(2), 259–268 (1998)

    Article  Google Scholar 

  125. X. Zhang, G. Xiong, W. Yang, A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability. J. Membr. Sci. 314(1–2), 226–237 (2008)

    Article  Google Scholar 

  126. P.M. Thoen, F. Roa, J.D. Way, High flux palladium-copper composite membranes for hydrogen separations. Desalination 193(1–3), 224–229 (2006)

    Article  Google Scholar 

  127. S.K. Gade, P.M. Thoen, J.D. Way, Unsupported palladium alloy foil membranes fabricated by electroless plating. J. Membr. Sci. 316(1–2), 112–118 (2008)

    Article  Google Scholar 

  128. S.-K. Ryi, N. Xu, A. Li, C.J. Lim, J.R. Grace, Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTA-free bath. Int. J. Hydrog. Energy 35(6), 2328–2335 (2010)

    Article  Google Scholar 

  129. Y.-H. Chi, J.-J. Lin, Y.-L. Lin, C.-C. Yang, J.-H. Huang, Influence of the rotation rate of porous stainless steel tubes on electroless palladium deposition. J. Membr. Sci. 475, 259–265 (2015)

    Article  Google Scholar 

  130. D. Alique, M. Imperatore, R. Sanz, J.A. Calles, M.G. Baschetti, Hydrogen permeation in composite Pd-membranes prepared by conventional electroless plating and electroless pore-plating alternatives over ceramic and metallic supports. Int. J. Hydrog. Energy 41(42), 19430–19438 (2016)

    Article  Google Scholar 

  131. D.A. Pacheco Tanaka, M.A. Llosa Tanco, T. Nagase, J. Okazaki, Y. Wakui, F. Mizukami, T.M. Suzuki, Fabrication of hydrogen-permeable composite membranes packed with palladium nanoparticles. Adv. Mater. 18(5), 630–632 (2006)

    Article  Google Scholar 

  132. D.A.P. Tanaka, M.A.L. Tanco, J. Okazaki, Y. Wakui, F. Mizukami, T.M. Suzuki, Preparation of “pore-fill” type Pd-YSZ-γ-Al2O3 composite membrane supported on α-Al2O3 tube for hydrogen separation. J. Membr. Sci. 320(1–2), 436–441 (2008)

    Article  Google Scholar 

  133. F. Roa, M.J. Block, J.D. Way, The influence of alloy composition on the H2 flux of composite Pd-Cu membranes. Desalination 147(1), 411–416 (2002)

    Article  Google Scholar 

  134. F. Roa, J.D. Way, The effect of air exposure on palladium-copper composite membranes. Appl. Surf. Sci. 240(1–4), 85–104 (2005)

    Article  Google Scholar 

  135. F. Roa, J.D. Way, R.L. McCormick, S.N. Paglieri, Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chem. Eng. J. 93(1), 11–22 (2003)

    Article  Google Scholar 

  136. A. Kulprathipanja, G.O. Alptekin, J.L. Falconer, J.D. Way, Pd and Pd-Cu membranes: inhibition of H2 permeation by H2S. J. Membr. Sci. 254(1–2), 49–62 (2005)

    Article  Google Scholar 

  137. S.K. Gade, E.A. Payzant, H.J. Park, P.M. Thoen, J.D. Way, The effects of fabrication and annealing on the structure and hydrogen permeation of Pd-Au binary alloy membranes. J. Membr. Sci. 340(1–2), 227–233 (2009)

    Article  Google Scholar 

  138. K. Zhang, S.K. Gade, J.D. Way, Effects of heat treatment in air on hydrogen sorption over Pd-Ag and Pd-Au membrane surfaces. J. Membr. Sci. 403–404, 78–83 (2012)

    Article  Google Scholar 

  139. N.S. Patki, S.-T. Lundin, J.D. Way, Rapid annealing of sequentially plated Pd-Au composite membranes using high pressure hydrogen. J. Membr. Sci. 513, 197–205 (2016)

    Article  Google Scholar 

  140. H.W.A. El Hawa, S.-T.B. Lundin, N.S. Patki, J.D. Way, Steam methane reforming in a PdAu membrane reactor: long-term assessment. Int. J. Hydrog. Energy 41(24), 10193–10201 (2016)

    Article  Google Scholar 

  141. K. Zhang, S.K. Gade, Ø. Hatlevik, J.D. Way, A sorption rate hypothesis for the increase in H2 permeability of palladium-silver (Pd-Ag) membranes caused by air oxidation. Int. J. Hydrog. Energy 37(1), 583–593 (2012)

    Article  Google Scholar 

  142. S.K. Gade, M.K. Keeling, A.P. Davidson, Ø. Hatlevik, J.D. Way, Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. Int. J. Hydrog. Energy 34(15), 6484–6491 (2009)

    Article  Google Scholar 

  143. F. Braun, J.B. Miller, A.J. Gellman, A.M. Tarditi, B. Fleutot, P. Kondratyuk, L.M. Cornaglia, PdAgAu alloy with high resistance to corrosion by H2S. Int. J. Hydrog. Energy 37(23), 18547–18555 (2012)

    Article  Google Scholar 

  144. J.B. Miller, B.D. Morreale, M.W. Smith, Pd-Alloy Membranes for Hydrogen Separation, in Reactor and Process Design in Sustainable Energy Technology, ed. by F. Shi (Ed), (Elsevier, Amsterdam, 2014), pp. 135–161

    Google Scholar 

  145. F. Gallucci, E. Fernandez, P. Corengia, M. van Sint Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013)

    Article  Google Scholar 

  146. M.D. Dolan, Non-Pd BCC alloy membranes for industrial hydrogen separation. J. Membr. Sci. 362(1–2), 12–28 (2013)

    Google Scholar 

  147. Z. Tao, L. Yan, J. Qiao, B. Wang, L. Zhang, J. Zhang, A review of advanced proton-conducting materials for hydrogen separation. Prog. Mater. Sci. 74, 1–50 (2015)

    Article  Google Scholar 

  148. U. Balachandran, T.H. Lee, G. Zhang, S.E. Dorris, K.S. Rothenberger, B.H. Howard, B. Morreale, A.V. Cugini, R.V. Siriwardane, J.A. Poston Jr., E.P. Fisher, Development of Dense Ceramic Membranes for Hydrogen Separation, in Studies in Surface Science and Catalysis, ed. by E. Iglesia, J. J. Spivey, T. H. Fleisch (Eds), (Elsevier, 2001), pp. 465–470

    Google Scholar 

  149. U. Balachandran, T.H. Lee, L. Chen, S.J. Song, J.J. Picciolo, S.E. Dorris, Hydrogen separation by dense cermet membranes. Fuel 85(2), 150–155 (2006)

    Article  Google Scholar 

  150. B. Zhu, C.H. Tang, H.Y. Xu, D.S. Su, J. Zhang, H. Li, Surface activation inspires high performance of ultra-thin Pd membrane for hydrogen separation. J. Membr. Sci. 526, 138–146 (2017)

    Article  Google Scholar 

  151. A.B. Antoniazzi, A.A. Haasz, O. Auciello, P.C. Stangeby, Atomic, ionic and molecular hydrogen permeation facility with in situ auger surface analysis. J. Nucl. Mater. 128–129, 670–675 (1984)

    Article  Google Scholar 

  152. S. Pati, R.A. Jat, S.K. Mukerjee, S.C. Parida, X-ray diffraction study of thermal parameters of Pd, Pd-Ag and Pd-Ag-Cu alloys as hydrogen purification membrane materials. Phys. B Condens. Matter 484, 42–47 (2016)

    Article  Google Scholar 

  153. J.W. Elam, A. Zinovev, C.Y. Han, H.H. Wang, U. Welp, J.N. Hryn, M.J. Pellin, Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films 515(4), 1664–1673 (2006)

    Article  Google Scholar 

  154. J.A. Leiro, M.H. Heinonen, I.G. Batirev, Surface segregation and core-level shift of a Pd-Rh alloy studied by XPS. Appl. Surf. Sci. 90(4), 515–521 (1995)

    Article  Google Scholar 

  155. J. Tang, Y. Zuo, Y. Tang, J. Xiong, Composition and corrosion resistance of palladium film on 316L stainless steel by brush plating. Trans. Nonferrous Metals Soc. China 22(1), 97–103 (2012)

    Article  Google Scholar 

  156. J. Skoryna, S. Pacanowski, A. Marczyńska, M. Werwiński, A. Rogowska, M. Wachowiak, Ł. Majchrzyckic, R. Czajkac, L. Smardz, XPS valence band studies of nanocrystalline ZrPd alloy thin films. Surf. Coat. Technol. 303, 125–130 (2016)

    Article  Google Scholar 

  157. M. Ohring, Mechanical Properties of Thin Films, in The Materials Science of Thin Films, (Academic Press, London, 1992), pp. 403–450

    Chapter  Google Scholar 

  158. W. Liang, R. Hughes, The effect of diffusion direction on the permeation rate of hydrogen in palladium composite membranes. Chem. Eng. J. 112(1), 81–86 (2005)

    Article  Google Scholar 

  159. T. Maneerung, K. Hidajat, S. Kawi, Ultra-thin (<1 μm) internally-coated Pd–Ag alloy hollow fiber membrane with superior thermal stability and durability for high temperature H2 separation. J. Membr. Sci. 452, 127–142 (2014)

    Article  Google Scholar 

  160. J. Dahlmeyer, T. Garrison, T. Garrison, S. Darkey, F. Massicotte, K. Rebeiz, S. Nesbit, A. Craft, Effects of hydrogen exposure temperature on the tensile strength, microhardness and ductility of Pd/Ag (25wt.%) alloy. Scr. Mater. 64(8), 789–792 (2011)

    Article  Google Scholar 

  161. S.P. Lynch, Hydrogen Embrittlement (HE) Phenomena and Mechanisms. In Stress Corrosion Cracking (Woodhead Publishing Series in Metals and Surface Engineering, 2011), pp. 90–130

    Google Scholar 

  162. A. Suzuki, H. Yukawa, T. Nambu, Y. Matsumoto, Y. Murata, Analysis of pressure–composition–isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement. J. Membr. Sci. 503, 110–115 (2016)

    Article  Google Scholar 

  163. A.F. Jankowski, Metallic multilayers at the nanoscale. Nanostruct. Mater. 6(1–4), 179–190 (1995)

    Article  Google Scholar 

  164. M.M. Mardanpour, R. Sadeghi, M.R. Ehsani, E.M. Nasr, Enhancement of dimethyl ether production with application of hydrogen-permselective Pd-based membrane in fluidized bed reactor. J. Ind. Eng. Chem. 18(3), 1157–1165 (2012)

    Article  Google Scholar 

  165. C. Ruocco, E. Meloni, V. Palma, M. van Sint Annaland, V. Spallina, F. Gallucci, Pt–Ni based catalyst for ethanol reforming in a fluidized bed membrane reactor. Int. J. Hydrog. Energy 41(44), 20122–20136 (2016)

    Article  Google Scholar 

  166. S. Tosti, F. Borgognoni, A. Santucci, Electrical resistivity, strain and permeability of Pd-Ag membrane tubes. Int. J. Hydrog. Energy 35(15), 7796–7802 (2010)

    Article  Google Scholar 

  167. K. Wald, J. Kubik, D. Paciulli, M. Talukder, J. Nott, F. Massicotte, K. Kebeiz, S. Nesbit, A. Craft, Effects of multiple hydrogen absorption/desorption cycles on the mechanical properties of the alloy system palladium/silver (wt% = 10–25). Scr. Mater. 117, 6–10 (2016)

    Article  Google Scholar 

  168. E. Jakobs, W.J. Koros, Ceramic membrane characterization via the bubble point technique. J. Membr. Sci. 124(2), 149–159 (1997)

    Article  Google Scholar 

  169. G. Reichelt, Bubble point measurements on large areas of microporous membranes. J. Membr. Sci. 60(2), 253–259 (1991)

    Article  Google Scholar 

  170. M. Vadrucci, F. Borgognoni, A. Moriani, A. Santucci, S. Tosti, Hydrogen permeation through Pd–Ag membranes: surface effects and Sieverts’ law. Int. J. Hydrog. Energy 38(10), 4144–4152 (2013)

    Article  Google Scholar 

  171. N.D. Deveau, Y.H. Ma, R. Datta, Beyond Sieverts’ law: a comprehensive microkinetic model of hydrogen permeation in dense metal membranes. J. Membr. Sci. 437, 298–311 (2013)

    Article  Google Scholar 

  172. A. Caravella, S. Hara, Y. Sun, E. Drioli, G. Barbieri, Coupled influence of non-ideal diffusion and multilayer asymmetric porous supports on Sieverts law pressure exponent for hydrogen permeation in composite Pd-based membranes. Int. J. Hydrog. Energy 39(5), 2201–2214 (2014)

    Article  Google Scholar 

  173. F. Gallucci, M. De Falco, S. Tosti, L. Marrelli, A. Basile, The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances. Int. J. Hydrog. Energy 32(16), 4052–4058 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

First of all, I want to acknowledge prof. Jing Zhang the opportunity to contribute in the preparation of this book. Also, it has been very important the support of prof. José Antonio Calles and prof. Raúl Sanz for developing my research career during the last years in the field of palladium membranes for hydrogen production in a membrane reactor, as well as the support of my host institution, the University Rey Juan Carlos, where I am currently working as associate professor. Lastly, I am grateful to the publishers of cited figures for allowing the reproduction of the images in the present chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Alique, D. (2018). Processing and Characterization of Coating and Thin Film Materials. In: Zhang, J., Jung, YG. (eds) Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59906-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59906-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59905-2

  • Online ISBN: 978-3-319-59906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics