Skip to main content

Overview of Advanced Ceramic and Metallic Coating for Energy and Environmental Applications

  • Chapter
  • First Online:
Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications
  • 1130 Accesses

Abstract

Advanced ceramics have gradually become an important part as the new and key materials in developing modern technologies, affecting the advancement and progress in industries. A series of excellent properties in advanced ceramics, specifically fine structure, such as superior strength and hardness, wear-resisting, corrosion resistance, high temperature resistant, conductive, insulation, magnetic, pervious to light, piezoelectric, ferroelectric, acousto-optic, semiconductor and superconductor, and biological compatibility are widely used in national defense, chemical industry, metallurgy, electronics, machinery, aviation, spaceflight, biomedicine, etc. Also, the development of advanced ceramics is a new growth point of national economy, and its status—research, application, and development, embodies a country as an important symbol of comprehensive strength of national economy. At present, the worldwide advanced ceramic technology is rapidly progressing, its application area is expanding, and the stable growth trend in market is obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.J. Zhao, J. Adv, Mater. Industry 8, 55–62 (2006)

    Google Scholar 

  2. J.F. Wu, J. Chin. Ceram. Industry (2011)

    Google Scholar 

  3. C. Watanabe, Res. Policy 28(7), 719–749 (1999)

    Article  MathSciNet  Google Scholar 

  4. C. Bayona-Saez, T. Gatcia-Marco, Res. Policy 39(10), 1375–1386 (2010)

    Article  Google Scholar 

  5. A.M. Li, J. Cerm. Eng. 5, 44–47 (1999)

    Google Scholar 

  6. Introduction to Gas Turbines for Non-Engineers (Published in the Global Gas Turbine News, 37, 1997)

    Google Scholar 

  7. Rolls-Royce plc, The Jet Engine, 4th, (Derby, UK: The Technical Publications Department, Rolls-Royce plc, 1992)

    Google Scholar 

  8. N.P. Padture, M. Gell, E.H. Jordan, Science 296(5566), 280–284 (2002)

    Article  Google Scholar 

  9. M.-P. Bacos, J.-M. Dorvaux, S. Landais, O. Lavigne, R. Mévrel, M. Poulain, C. Rio, M.-H. Vidal-Sétif, J. Aero, Laboratory 3, 1–14 (2011)

    Google Scholar 

  10. D.R. Clarke, M. Oechsner, N.P. Padture, MRS Bull. 37, 891–897 (2012)

    Article  Google Scholar 

  11. X.L. Jiang, C.B. Liu, F. Lin, J. Mater. Sci. Technol. 23(4), 449–456 (2007)

    Google Scholar 

  12. S.A. Tsipasand, I.O. Golosnoy, J. Eur, Ceram. Soc. 31(15), 2923–2929 (2011)

    Article  Google Scholar 

  13. M. Madhwal, E.H. Jordan, M. Gell, Mater. Sci. and Eng. A. 384(1), 151–161 (2004)

    Article  Google Scholar 

  14. Y.N. Wu, P.L. Ke, Q.M. Wang, et al., Corros. Sci. 46(12), 2925–2935 (2004)

    Article  Google Scholar 

  15. Y. Itoh, M. Saitoh, M. Tamura, J. Eng. Gas Turbine Power 122, 43–49 (2000)

    Article  Google Scholar 

  16. Y.N. Wu, G. Zhang, Z.C. Feng, et al., Surf. Coat. Technol. 136, 56–60 (2001)

    Article  Google Scholar 

  17. N.P. Padture, K.W. Schlichting, T. Bhatia, et al., Acta Mater. 49, 2251–2257 (2001)

    Article  Google Scholar 

  18. D.R. Clarke, C.G. Levi, Annu. Rev. Mater. Res. 33, 383–417 (2003)

    Article  Google Scholar 

  19. D.R. Clarke, S.R. Phillport, Mater. Today 8, 22–29 (2005)

    Article  Google Scholar 

  20. Y. Li, C.J. Li, G.J. Yang, et al., Surf. Coat. Technol. 205(7), 2225–2233 (2010)

    Article  Google Scholar 

  21. J.A. Haynes, M.K. Ferber, W.D. Porter, Mater. High Temp. 16, 49–69 (1999)

    Article  Google Scholar 

  22. N.J. Simms, P.J. Kilgallon, C. Roach, et al., Mater. High Temp. 20, 519–526 (2003)

    Google Scholar 

  23. A. Peichl, T. Beck, O. Vöhringer, Surf. Coat. Technol. 162, 113–118 (2003)

    Article  Google Scholar 

  24. S.J. Bull, R.I. Davidson, E.H. Fisher, et al., Surf. Coat. Technol. 130, 257–265 (2000)

    Article  Google Scholar 

  25. X.Q. Ma, M. Takemoto, Mater. Sci. Eng. A 308, 101–110 (2001)

    Article  Google Scholar 

  26. B.K. Pant, V. Arya, B.S. Mann, J. Therm, Spray Technol. 16, 275–280 (2007)

    Article  Google Scholar 

  27. K.W. Schlichting, N.P. Padture, E.H. Jordan, et al., J. Therm. Spray Technol. 342, 120–130 (2003)

    Google Scholar 

  28. A. Rabiei, A.G. Evans, Acta Mater. 48, 3963–3976 (2000)

    Article  Google Scholar 

  29. A. Feuerstein, J. Knapp, T. Taylor, et al., J. Therm. Spray Technol. 17, 199–213 (2008)

    Article  Google Scholar 

  30. K. Richardt, K. Bobzin, D. Sporer, et al., J. Therm. Spray Technol. 17, 612–616 (2008)

    Article  Google Scholar 

  31. X.Q. Cao, R. Vassen, D. Stoeverb, J. Eur. Ceram. Soc. 24, 1–10 (2004)

    Article  Google Scholar 

  32. R. Dutton, R. Wheeler, K.S. Ravichandran, et al., J. Therm. Spray Technol. 9, 204–209 (2000)

    Article  Google Scholar 

  33. T. Bhatia, A. Ozturk, L. Xie, et al., J. Mater. Res. 17, 2363–2372 (2002)

    Article  Google Scholar 

  34. A.D. Jadhav, N.P. Padture, F. Wu, et al., Mater. Sci. and Eng. A. 405, 313–320 (2005)

    Article  Google Scholar 

  35. T.A. Taylor, D.L. Appleby, A.E. Weatherill, et al., Surf. Coat. Technol. 43–44, 470–480 (1990)

    Article  Google Scholar 

  36. Y.H. Sohn, E.Y. Lee, B.A. Nagaraj, et al., Surf. Coat. Technol. 146–147, 132–139 (2001)

    Article  Google Scholar 

  37. R.A. Miller, J. Therm, Spray Technol. 6, 35–42 (1997)

    Article  Google Scholar 

  38. S. Bose, J. DeMasi-Marcin, J. Therm, Spray Technol. 6, 99–104 (1997)

    Article  Google Scholar 

  39. R.A. Miler, Surf. Coat. Technol. 30–1, 1–11 (1987)

    Article  Google Scholar 

  40. G.W. Goward, Surf. Coat. Technol. 108–119, 73–79 (1998)

    Article  Google Scholar 

  41. F. Cernushci, P. Bianchi, M. Leoni, P. Scardi, J. Therm. Spray Technol. 8(1), 102–109 (1999)

    Article  Google Scholar 

  42. S. Rangaraj, K. Kokini, Surf. Coat. Technol. 20(4), 201–212 (2003)

    Article  Google Scholar 

  43. R. Taylor, J.R. Brandon, P. Morrel, Surf. Coat. Technol. 50, 141–149 (1992)

    Article  Google Scholar 

  44. D.R. Clarke, Surf. Coat. Technol. 163, 67–74 (2003)

    Article  Google Scholar 

  45. J. Gupta, G. Singh, L. Divan, et al., Adv. Sci. Focus. 2(2), 159–164 (2014)

    Article  Google Scholar 

  46. A.M. Limarga, S. Shian, R.M. Leckie, J. Eur. Ceram. Soc. 34(12), 2085–3094 (2014)

    Article  Google Scholar 

  47. M. Han, G. Zhou, J. Huang, et al., Surf. Coat. Technol. 240, 320–326 (2014)

    Article  Google Scholar 

  48. F. Cernuschi, P. Bianchi, M. Leoni, et al., J. Therm. Spray Technol. 8(1), 102–109 (1999)

    Article  Google Scholar 

  49. X. Zhou, Z. Xu, X. Fan, et al., Mater. Lett. 134, 146–148 (2014)

    Article  Google Scholar 

  50. R. Vaßen, M.O. Jarligo, T. Steinke, Surf. Coat. Technol. 205(4), 938–942 (2010)

    Article  Google Scholar 

  51. S. Das, S. Datta, D. Basu, Ceram. Int. 35(4), 1403–1406 (2009)

    Article  Google Scholar 

  52. W. Ma, H. Dong, H. Guo, et al., Surf. Coat. Technol. 204(21), 3366–3370 (2010)

    Article  Google Scholar 

  53. H.G. Scott, J. Mater. Sci. 10(9), 1527–1535 (1975)

    Article  Google Scholar 

  54. J.R. Nicholls et al., Surf. Coat. Technol. 151, 383–391 (2002)

    Article  Google Scholar 

  55. M. Peters, U. Schulz, in Proc. First CEAS European Air and Space Conference Deutscher Luft- und Raumfahrtkongress, (2017), pp. 1–9

    Google Scholar 

  56. C.R.C. Lima, R. da Exalltacao Trevisan, J. Therm, Spray Technol. 8(2), 323–327 (1999)

    Article  Google Scholar 

  57. M. Tamura, M. Takahashi, J. Ishii, et al., J. Therm. Spray Technol. 8(1), 68–72 (1999)

    Article  Google Scholar 

  58. C. Viazzi, J.P. Bonino, F. Ansart, A. Barnabé, J. Alloys Compd. 452, 377–383 (2008)

    Article  Google Scholar 

  59. J.S. Wallace, J. Ilavsky, J. Therm. Spray Technol. 7(4), 521–526 (1999)

    Article  Google Scholar 

  60. P. Ramaswamy, S. Seetharamu, K.B.R. Varma, J. Therm. Spray Technol. 7(4), 497–504 (1999)

    Article  Google Scholar 

  61. E.A.G. Shillington, D.R. Clarke, Acta Mater. 47(4), 1297–1305 (1999)

    Article  Google Scholar 

  62. B.A. Pint, I.G. Wright, W.Y. Lee, et al., Mater. Sci. and Eng. A. 254(2), 201–211 (1998)

    Article  Google Scholar 

  63. D. Mercier, B.D. Gauntt, M. Brochu, Surf. Coat. Technol. 205(17), 4162–4168 (2011)

    Article  Google Scholar 

  64. P.F. Zhao, X.D. Li, F.L. Shang, et al., Mater. Sci. Eng. A 528(25), 7641–7647 (2011)

    Article  Google Scholar 

  65. Y. Li, C.J. Li, Q. Zhang, et al., J. Therm. Spray Technol. 19(1–2), 168–177 (2010)

    Article  Google Scholar 

  66. J. Benoista, K.F. Badawi, A. Malie, et al., Surf. Coat. Technol. 182(1), 14–23 (2004)

    Article  Google Scholar 

  67. H.M. Tawancy, N.M. Abbas, A. Bennett, Surf. Coat. Technol. 68, 10–16 (1994)

    Article  Google Scholar 

  68. M. Li, X. Sun, W. Hu, H. Guan, Surf. Coat. Technol. 201(16), 7387–7391 (2007)

    Article  Google Scholar 

  69. H.J. Rätzer-Scheibe, U. Schulz, T. Krell, Surf. Coat. Technol. 200, 5636–5644 (2006)

    Article  Google Scholar 

  70. D.B. Lee, J.H. Ko, J.H. Yi, J. Therm, Spray Technol. 14(3), 315–320 (2005)

    Article  Google Scholar 

  71. B. Gleeson, J. Propul, Power 22, 375–383 (2006)

    Google Scholar 

  72. U. Täck, Ph.D. Thesis, Tech. Univ. Freiberg, 2004, p. 25, p. 151, p. 169

    Google Scholar 

  73. W. Beele, N. Czech, W.J. Quadakkers, W. Stamm, Surf. Coat. Technol. 94–95, 41–45 (1997)

    Article  Google Scholar 

  74. N. Czech, F. Schmitz, W. Stamm, Surf. Coat. Technol. 68, 17–21 (1994)

    Article  Google Scholar 

  75. P. Fox, G.J. Tatlock, Mater. Sci. Technol. 5(8), 816–827 (1989)

    Article  Google Scholar 

  76. H.M. Tawancy, L.M. Al-Hadhrami, Turbo Expo (2010)

    Google Scholar 

  77. D. Renusch, M. Schütze, Surf. Coat. Technol. 202(4), 740–744 (2007)

    Article  Google Scholar 

  78. R. Sivakumar, B.L. Mordike, Surf. Coat. Technol. 37(2), 139–160 (1989)

    Article  Google Scholar 

  79. M.J. Pomeroy, Mater. Des. 26(3), 223–231 (2005)

    Article  Google Scholar 

  80. H. Echsler, D. Renusch, M. Schütze, Mater. Sci. Eng. 20(3), 307–318 (2004)

    Google Scholar 

  81. W.R. Chen, X. Wu, B.R. Marple, P.C. Patnaik, Surf. Coat. Technol. 201(3), 1074–1079 (2006)

    Article  Google Scholar 

  82. J. Zhang, V. Desai, Surf. Coat. Technol. 190(1), 98–109 (2005)

    Article  Google Scholar 

  83. W.R. Chen, X. Wu, B.R. Marple, et al., Surf. Coat. Technol. 202(16), 3787–3796 (2008)

    Article  Google Scholar 

  84. S. Sridharan, L. Xie, E.H. Jordan, et al., Mater. Sci. Eng. A 393(1), 51–62 (2005)

    Article  Google Scholar 

  85. T. Tomimatsu, S. Zhu, Y. Kagawa, Acta Mater. 51(8), 2397–2405 (2003)

    Article  Google Scholar 

  86. K.M. Carling, E.A. Carter, Acta Mater. 55(8), 2791–2803 (2007)

    Article  Google Scholar 

  87. U. Schulz, M. Menzebach, C. Leyens, Y.Q. Yang, Surf. Coat. Technol. 146, 117–123 (2001)

    Article  Google Scholar 

  88. A. Weisenburger, G. Rizzi, A. Scrivani, Surf. Coat. Technol. 202(4), 704–708 (2007)

    Article  Google Scholar 

  89. Y. Zhao, A. Shinmi, X. Zhao, et al., Surf. Coat. Technol. 206(23), 4922–4929 (2012)

    Article  Google Scholar 

  90. G. Mauer, M.O. Jarligo, D.E. Mack, R. Vaßen, J. Therm. Spray Technol. 22(5), 646–658 (2013)

    Article  Google Scholar 

  91. Y. Zhang, D.E. Mack, M.O. Jarligo, J. Therm. Spray Technol. 18(4), 694–701 (2009)

    Article  Google Scholar 

  92. S. Paulussen, R. Rego, O. Goossens, et al., Surf. Coat. Technol. 200(1), 672–675 (2005)

    Article  Google Scholar 

  93. F. Leroux, C. Campagne, A. Perwuelz, L. Gengembre, Appl. Surf. Sci. 254(13), 3902–3908 (2008)

    Article  Google Scholar 

  94. S. Kuroda, J. Kawakita, M. Watanabe, H. Katanoda, Sci. Technol. Adv. Mater. 9, 1–17 (2008)

    Google Scholar 

  95. P. Scardi, M. Leoni, L. Bertini, L. Bertamini, Surf. Coat. Technol. 94, 82–88 (1997)

    Article  Google Scholar 

  96. E. Lugscheider, K. Bobzin, S. Bärwulf, A. Etzkorn, Surf. Coat. Technol. 138(1), 9–13 (2001)

    Article  Google Scholar 

  97. U. Schulz, J. Amer. Cer. Soc. 83(4), 904–910 (2000)

    Article  Google Scholar 

  98. B. Saruhan, P. Francois, K. Fritscher, U. Schulz, Surf. Coat. Technol. 182(2), 175–183 (2004)

    Article  Google Scholar 

  99. D.E. Wolfe, J. Singh, R.A. Miller, et al., Surf. Coat. Technol. 190(1), 132–149 (2005)

    Article  Google Scholar 

  100. S.M. Meier, D.M. Nissley, K.D. Sheffler, T.A. Cruse, J. Eng. Gas Turbines Power 114(2), 258–263 (1992)

    Article  Google Scholar 

  101. J. Singh, D.E. Wolfe, J. Mater. Sci. 40(1), 1–26 (2005)

    Article  Google Scholar 

  102. G. Wahl, W. Nemetz, M. Giannozzi, et al., J. Eng. Gas Turbines Power 123(3), 520–524 (2001)

    Article  Google Scholar 

  103. W.R. Chen, X. Wu, B.R. Marple, et al., Surf. Coat. Technol. 202(12), 2677–2683 (2008)

    Article  Google Scholar 

  104. P. Richer, M. Yandouzi, L. Beauvais, B. Jodoin, Surf. Coat. Technol. 204, 3962–3974 (2010)

    Article  Google Scholar 

  105. C.R.C. Lima, J. Nin, J.M. Guilemany, Surf. Coat. Technol. 200, 5963–5972 (2006)

    Article  Google Scholar 

  106. F.H. Yuan, Z.X. Chen, Z.W. Huang, et al., Corros. Sci. 50(6), 1608–1617 (2008)

    Article  Google Scholar 

  107. A.C. Karaoglanli, E. Altuncu, I. Ozdemir, et al., Surf. Coat. Technol. 205, 369–373 (2011)

    Article  Google Scholar 

  108. J.Y. Kwon, J.H. Lee, H.C. Kim, et al., Mater. Sci. Eng. A 429(1), 173–180 (2006)

    Article  Google Scholar 

  109. Y. Itoh, M. Saitoh, M. Tamura, J. Eng. Gas Turbines Power 122, 43–49 (2000)

    Article  Google Scholar 

  110. J. Pina, A. Dias, J.L. Lebrun, Mater. Sci. Eng. A 347(1), 21–31 (2003)

    Article  Google Scholar 

  111. K. Ogawa, K. Ito, T. Shoji, et al., J. Therm. Spray Technol. 15(4), 640–651 (2006)

    Article  Google Scholar 

  112. M. Tanno, K. Ogawa, T. Shoji, Surf. Coat. Technol. 204(15), 2504–2509 (2010)

    Article  Google Scholar 

  113. D. Seo, K. Ogawa, Y. Nakao, et al., Surf. Coat. Technol. 203(14), 1979–1983 (2009)

    Article  Google Scholar 

  114. R.G. Wellman, A. Scrivani, G. Rizzi, et al., Surf. Coat. Technol. 202(4), 709–713 (2007)

    Article  Google Scholar 

  115. L. Ajdelsztajn, B. Jodoin, J.M. Schoenung, Surf. Coat. Technol. 201, 1166–1172 (2006)

    Article  Google Scholar 

  116. T.H. Van Steenkiste, J.R. Smith, R.E. Teets, Surf. Coat. Technol. 154, 237–252 (2002)

    Article  Google Scholar 

  117. S. Saeidi, K.T. Voisey, D.G. McCartney, J. Therm. Spray Technol. 18(2), 209–216 (2009)

    Article  Google Scholar 

  118. Q. Zhang, C.-J. Li, C.-X. Li, et al., Surf. Coat. Technol. 202(14), 3378–3384 (2008)

    Article  Google Scholar 

  119. D.M. Zhu, R.A. Miller, Int. J. Am. Ceram. Technol. 1, 86–94 (2004)

    Article  Google Scholar 

  120. R. Gadow, M. Lischka, Surf. Coat. Technol. 151, 392–399 (2002)

    Article  Google Scholar 

  121. R. Gadow, G. W. Schäfer, Patent 99-EP982 9942630, WO (1999)

    Google Scholar 

  122. G. Pracht, R. Vassen, D. Stöver, Ger. Pat. App. 10(11), 225 (2005)

    Google Scholar 

  123. G.W. Schäfer, R. Gadow, Ceram. Eng. Sci. Proc. 20(4), 291–297 (1999)

    Article  Google Scholar 

  124. C.J. Friedrich, R. Gadow, M.H. Lischka, Ceram. Eng. Sci. Proc. 22(4), 375 (2001)

    Article  Google Scholar 

  125. C. Friedrich, R. Gadow, T. Schirmer, J. Therm. Spray Technol. 10, 592 (2001)

    Article  Google Scholar 

  126. R. Gadow, M. Lischka, Surf. Coat. Technol. 151, 392 (2002)

    Article  Google Scholar 

  127. S. Sodeoka, M. Suzuki, T. Inoue, K. Ueno, and S. Oki, ASM Inter. (1996), pp. 295–302

    Google Scholar 

  128. J.W. Holmes and B.H. Pilsner, ASM Inter. (1987), pp. 259–270

    Google Scholar 

  129. G.N. Heintze, R. McPherson, ASM Inter. (1987), pp. 271–275

    Google Scholar 

  130. H.K. Kim, H.S. Choi, C.H. Lee, Proc. Un. Therm. Spray Conf., 740–746 (1999)

    Google Scholar 

  131. J. Thornton, A. Majumdar, G. McAdam, Surf. Coat. Technol. 94(/95), 112–117 (1997)

    Article  Google Scholar 

  132. A. Rouanet et al., Thermal Spraying-Current Status and Future Trends 1, 507–512 (1995)

    Google Scholar 

  133. K.N. Lee, H. Fritze, Y. Ogura, ASME PRESS (2003), pp. 641–664

    Google Scholar 

  134. N.S. Jacobson, J. Am. Ceram. Soc. 76(1), 3–28 (1993)

    Article  Google Scholar 

  135. W.J. Lackey, D.P. Stinton, G.A. Cerny, A.C. Schaffhauser, L.L. Fehrenbacher, Adv. Ceram. Mater. 2(1), 24–30 (1987)

    Article  Google Scholar 

  136. D.W. Graham, D.P. Stinton, in Proc. Coat. Adv. Heat Eng. Workshop. IV65-IV71 (1992)

    Google Scholar 

  137. K.N. Lee, R.A. Miller, D. Surf. Coat. Technol. 86(/87), 142–148 (1996)

    Article  Google Scholar 

  138. K.N. Lee, D.S. Fox, N.P. Bansal, J. Eur. Ceram. Soc. 25(10), 1705–1715 (2005)

    Article  Google Scholar 

  139. K.N. Lee, Sur. Coat, Technol. 133, 1–7 (2000)

    Google Scholar 

  140. K.N. Lee, R.A. Miller, N.S. Jacobson, J. Am. Ceram. Soc. 78(3), 705–710 (1995)

    Article  Google Scholar 

  141. K.N. Lee et al., J. Am. Ceram. Soc. 86(8), 1299–1306 (2003)

    Article  Google Scholar 

  142. K.N. Lee, Surf. Coat. Technol. 1–7, 133–134 (2000)

    Google Scholar 

  143. K.N. Lee, Trans. ASME. 122, 632–636 (2000)

    Article  Google Scholar 

  144. K.L. More, P.F. Tortorelli, L.R. Walker, J.B. Kimmel, N. Miriyala, J.R. Price, et al., ASME. 4, 155–162 (2002)

    Google Scholar 

  145. Y. Tamarin, ASM Inter. (2002)

    Google Scholar 

  146. K.N. Lee, Unpublished Research, NASA Glenn Research Center

    Google Scholar 

  147. C.M. Weyant, K.T. Faber, J.D. Almer, J.V. Guibeen, J. Am. Ceram. Soc. 88(8), 2169–2176 (2005)

    Article  Google Scholar 

  148. T. Ohji, H. Klemm, M. Fritsch, et al., in The 28th Int. Conf. & Exp. On Adv. Ceram. & Comp., FL (2004)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (2011–0030058), by the Ministry of Science, ICT and Future Planning (234-4413.C), by the Power Generation & Electricity Delivery of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grants funded by the Korean Government Ministry of Trade, Industry and Energy (2013-101010-170C), and by the United States Department of Energy (Grant No. DE-FE0008868, program manager: Richard Dunst).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Gil Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lu, Z., Jung, YG., Zhang, J. (2018). Overview of Advanced Ceramic and Metallic Coating for Energy and Environmental Applications. In: Zhang, J., Jung, YG. (eds) Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59906-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59906-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59905-2

  • Online ISBN: 978-3-319-59906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics