Skip to main content

Pathogenesis of Colorectal Cancer

  • Chapter
  • First Online:
Introduction to Gastrointestinal Diseases Vol. 2

Abstract

Colorectal cancer, because of its high morbidity and mortality rates, is one of the most studied human diseases. Advances in our understanding of the molecular genetics and epigenetics of colorectal cancer have led to novel insights into its pathogenesis. The results show that both pathogenic mechanisms and the influence of the etiological factors create a complex and multifarious network of events. Somatic and germline mutations, alongside with chromosomal and microsatellite instability, and epigenetic changes were found to be the key factors in both heritable and sporadic cases of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Adenomatous polyposis coli

BAX:

Bcl-2-associated X protein

BRAF:

v-Raf murine sarcoma viral oncogene homologue B

CABLES:

CDK5 and ABL1 enzyme substrate 1 gene

CDK:

Cyclin-dependent cell cycle kinase

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

CIMP:

CpG island methylator phenotype

CIN:

Chromosome instability

CpG:

5′-Cytosine-phosphate-guanine-3′ sequence

CRC:

Colorectal cancer

DCC:

Deleted in colorectal cancer

FAP:

Familial adenomatous polyposis

GATA:

Transcription factor

GTP:

Guanidine tri-phosphate

HDAC2:

Phosphatase and tensin homologue

HIC1:

Hypermethylated in cancer 1

HMPS:

Hereditary mixed polyposis syndrome

HNPCC:

Hereditary nonpolyposis colorectal cancer

IGF:

Insulin-like growth factor

JPS:

Juvenile polyposis syndrome

KRAS:

Kirsten rat sarcoma 2 viral oncogene homologue

LOH:

Loss of heterozygosity

MAP:

MUTYH-associated polyposis

MGMT:

O-6-methylguanine-DNA methyltransferase

MINT:

Methylated in tumor

miRNA:

Micro-RNA

MLH:

MutL homologue

MMR:

DNA mismatch repair

MRE11A:

Meiotic recombination 11 homologue A

MSH:

MutS homologue

MSI:

Microsatellite instability

MSS:

Microsatellite stable

MUTYH:

MutY homologue

MYC:

Avian myelocytomatosis viral oncogene homologue

PJS:

Peutz-Jeghers syndrome

PMS:

Postmeiotic segregation increased

POLE/POLD1:

Polymerase proofreading-associated polyposis

PTEN:

Phosphatase and tensin homologue

RAD50:

S. cerevisiae and D. melanogaster homologue

RAS:

Rat sarcoma viral oncogene homologue

RUNX3:

Runt-related transcription factor 3

SMAD:

Mothers against decapentaplegic homologue

SOCS1:

Suppressor of cytokine signaling 1

SPS:

Serrated polyposis syndrome

SRFP:

Secreted frizzled-related protein 1

TGFβ:

Transforming growth factor β

TIMP3:

Tissue inhibitor of metalloproteinase 3

TP53:

Tumor protein p53/tumor suppressor p53

Wnt:

Wingless-related integration site

References

  1. Ervik M, Lam F, Ferlay J, Mery L, Soerjomataram I, Bray F. Cancer today. Lyon, France: International Agency for Research on Cancer; 2016. Available from: http://gco.iarc.fr/today. Accessed 19 Nov 2016

    Google Scholar 

  2. Shiller M, Boostrom S. The molecular basis of rectal cancer. Clin Colon Rectal Surg. 2015;28(1):53–60. doi:10.1055/s-0035-1545070.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hardy RG, Meltzer SJ, Jankowski JA. ABC of colorectal cancer. Molecular basis for risk factors. BMJ. 2000;321(7265):886–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4(10):769–80.

    Article  PubMed  Google Scholar 

  5. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  6. Worthley DL, Whitehall VL, Spring KJ, Leggett BA. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13(28):3784–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60. doi:10.1056/NEJMra0804588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J. Molecular pathways in colorectal cancer. J Gastroenterol Hepatol. 2012;27(9):1423–31. doi:10.1111/j.1440-1746.2012.07200.x.

    Article  CAS  PubMed  Google Scholar 

  9. Schweiger MR, Hussong M, Röhr C, Lehrach H. Genomics and epigenomics of colorectal cancer. Wiley Interdiscip Rev Syst Biol Med. 2013;5(2):205–19. doi:10.1002/wsbm.1206.

    Article  CAS  PubMed  Google Scholar 

  10. Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 2005;19(8):877–90.

    Article  CAS  PubMed  Google Scholar 

  11. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507. doi:10.1146/annurev-pathol-011110-130235.

    Article  CAS  PubMed  Google Scholar 

  12. Perea J, Lomas M, Hidalgo M. Molecular basis of colorectal cancer: towards an individualized management? Rev Esp Enferm Dig. 2011;103(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  13. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7(3):153–62. doi:10.1038/nrclinonc.2009.237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234(1):10–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4(12):988–93.

    Article  CAS  PubMed  Google Scholar 

  16. Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56(1):140–8.

    Article  CAS  PubMed  Google Scholar 

  17. Arends MJ. Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol. 2013;21(2):97–102. doi:10.1097/PAI.0b013e31827ea79e.

    CAS  PubMed  Google Scholar 

  18. Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102. doi:10.1186/1476-4598-8-102.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam I. Cygankiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cygankiewicz, A.I., Jacenik, D., Krajewska, W.M. (2017). Pathogenesis of Colorectal Cancer. In: Fichna, J. (eds) Introduction to Gastrointestinal Diseases Vol. 2. Springer, Cham. https://doi.org/10.1007/978-3-319-59885-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59885-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59884-0

  • Online ISBN: 978-3-319-59885-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics