Skip to main content

Transfer Learning Using Convolutional Neural Networks for Face Anti-spoofing

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10317))

Included in the following conference series:

Abstract

Face recognition systems are gaining momentum with current developments in computer vision. At the same time, tactics to mislead these systems are getting more complex, and counter-measure approaches are necessary. Following the current progress with convolutional neural networks (CNN) in classification tasks, we present an approach based on transfer learning using a pre-trained CNN model using only static features to recognize photo, video or mask attacks. We tested our approach on the REPLAY-ATTACK and 3DMAD public databases. On the REPLAY-ATTACK database our accuracy was 99.04% and the half total error rate (HTER) of 1.20%. For the 3DMAD, our accuracy was of 100.00% and HTER 0.00%. Our results are comparable to the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  3. Seal, A., Ganguly, S., Bhattacharjee, D., Nasipuri, M., Basu, D.K.: Automated thermal face recognition based on minutiae extraction. CoRR abs/1309.1000 (2013)

    Google Scholar 

  4. Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: Face and Gesture 2011, pp. 436–441, March 2011

    Google Scholar 

  5. Galbally, J., Marcel, S., Fierrez, J.: Biometric antispoofing methods: a survey in face recognition. IEEE Access 2, 1530–1552 (2014)

    Article  Google Scholar 

  6. Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of fourier spectra, vol. 5404, pp. 296–303 (2004)

    Google Scholar 

  7. Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_37

    Chapter  Google Scholar 

  8. Peixoto, B., Michelassi, C., Rocha, A.: Face liveness detection under bad illumination conditions. In: 2011 18th IEEE International Conference on Image Processing, pp. 3557–3560, September 2011

    Google Scholar 

  9. Erdogmus, N., Marcel, S.: Spoofing 2D face recognition with 3D masks. IEEE Trans. Inf. Forensics Secur. 9(7), 1084–1097 (2014)

    Article  Google Scholar 

  10. Pan, G., Sun, L., Wu, Z., Lao, S.: Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8, October 2007

    Google Scholar 

  11. Li, J.W.: Eye blink detection based on multiple gabor response waves. In: 2008 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2852–2856, July 2008

    Google Scholar 

  12. Liting, W., Xiaoqing, D., Chi, F.: Face live detection method based on physiological motion analysis. Tsinghua Sci. Technol. 14(6), 685–690 (2009)

    Article  Google Scholar 

  13. Kollreider, K., Fronthaler, H., Bigun, J.: Verifying liveness by multiple experts in face biometrics. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6, June 2008

    Google Scholar 

  14. Anjos, A., Chakka, M.M., Marcel, S.: Motion-based counter-measures to photo attacks in face recognition. IET Biom. 3(3), 147–158 (2014)

    Article  Google Scholar 

  15. Freitas Pereira, T., Anjos, A., Martino, J.M., Marcel, S.: LBP – TOP based countermeasure against face spoofing attacks. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 121–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37410-4_11

    Chapter  Google Scholar 

  16. Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8, September 2013

    Google Scholar 

  17. Feng, L., Po, L.M., Li, Y., Xu, X., Yuan, F., Cheung, T.C.H., Cheung, K.W.: Integration of image quality and motion cues for face anti-spoofing: a neural network approach. J. Vis. Commun. Image Represent. 38, 451–460 (2016)

    Article  Google Scholar 

  18. Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. CoRR abs/1408.5601 (2014)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Menotti, D., Chiachia, G., Pinto, A., Schwartz, W.R., Pedrini, H., Falcão, A.X., Rocha, A.: Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015)

    Article  Google Scholar 

  21. Alotaibi, A., Mahmood, A.: Deep face liveness detection based on nonlinear diffusion using convolution neural network. Sig. Image Video Process. 11, 1–8 (2016)

    Google Scholar 

  22. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)

    Article  Google Scholar 

  23. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  24. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  25. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3320–3328. Curran Associates, Inc. (2014)

    Google Scholar 

  26. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2014

    Google Scholar 

  27. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  29. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  30. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  31. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Comput. Surv. 2, 163–213 (1999)

    Google Scholar 

  32. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7, September 2012

    Google Scholar 

  33. Erdogmus, N., Marcel, S.: Spoofing in 2D face recognition with 3D masks and anti-spoofing with kinect. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6, September 2013

    Google Scholar 

  34. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

    Google Scholar 

  35. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: a general-purpose face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU School of Computer Science (2016)

    Google Scholar 

  36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oeslle Lucena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lucena, O., Junior, A., Moia, V., Souza, R., Valle, E., Lotufo, R. (2017). Transfer Learning Using Convolutional Neural Networks for Face Anti-spoofing. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59876-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59875-8

  • Online ISBN: 978-3-319-59876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics