Skip to main content

Fully Deep Convolutional Neural Networks for Segmentation of the Prostate Gland in Diffusion-Weighted MR Images

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10317))

Included in the following conference series:

Abstract

Prostate cancer is a leading cause of mortality among men. Diffusion-weighted magnetic resonance imaging (DW-MRI) has shown to be successful at monitoring and detecting prostate tumors. The clinical guidelines to interpret DW-MRI for prostate cancer requires the segmentation of the prostate gland into different zones. Moreover, computer-aided detection tools which are designed to detect prostate cancer automatically, usually require the segmentation of prostate gland as a preprocessing step. In this paper, we present a segmentation algorithm for delineation of the prostate gland in DW-MRI via fully convolutional neural network. The segmentation algorithm was applied to images of 30 (testing) and 104 (training) patients and a median Dice Similarity Coefficient of 0.89 was achieved. This method is faster and returns similar results compared to registration based methods; although it has the potential to produce improved results given a larger training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Neural Information and Processing Systems (NIPS), pp. 1–9 (2012)

    Google Scholar 

  2. Mcmaster, M.L., Kristinsson, S.Y., Turesson, I., Bjorkholm, M., Landgren, O.: NIH public access. Clin. Lymphoma 9(1), 19–22 (2010)

    Article  Google Scholar 

  3. Barentsz, J.O., et al.: ESUR prostate MR guidelines 2012. Eur. Radiol. 22(4), 746–757 (2012)

    Article  Google Scholar 

  4. Martin, S., et al.: A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI. Int. J. Radiat. Oncol. Biol. Phys. 85(1), 95–100 (2013)

    Article  Google Scholar 

  5. Khalvati, F., et al.: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med. Imaging 15, 1–14 (2015). doi:10.1186/s12880-015-0069-9

    Article  Google Scholar 

  6. Cameron, A., Khalvati, F., Haider, M., Wong, A.: MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans. Bio-Med. Eng. 63(6), 1145–1156 (2016)

    Article  Google Scholar 

  7. Khalvati, F., et al.: Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences. Med. Phys. 40(12), 123503 (2013)

    Article  Google Scholar 

  8. Khalvati, F., et al.: Sequential registration-based segmentation of prostate gland in MR image volumes. J. Digit. Imaging 29, 254–263 (2016)

    Article  Google Scholar 

  9. Zhang, J., Baig, S., Wong, A., Haider, M.A., Khalvati, F.: A local ROI-specific atlas-based segmentation of prostate gland and transitional zone in diffusion MRI. J. Comput. Vis. Imaging Syst. 2(1) (2016)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Keras: Deep learning library for theano and tensorflow (2015). https://keras.io/

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07, pp. 3431–3440, 12 June 2015

    Google Scholar 

  13. Szegedy, C., Ioffe, S., Vanhoucke, V.: INCEPTION - V4, INCEPTION - R and the impact of residual connections on learning. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  14. Goroshin, R., et al.: Efficient object localization using convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  15. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations 2015 (2015)

    Google Scholar 

  16. Marko, J.D.: https://github.com/jocicmarko (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Khalvati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Clark, T., Wong, A., Haider, M.A., Khalvati, F. (2017). Fully Deep Convolutional Neural Networks for Segmentation of the Prostate Gland in Diffusion-Weighted MR Images. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59876-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59875-8

  • Online ISBN: 978-3-319-59876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics