Skip to main content

Uniform Trajectory Attractors for Non-autonomous Nonlinear Systems

  • Chapter
  • First Online:
Qualitative and Quantitative Analysis of Nonlinear Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 111))

  • 954 Accesses

Abstract

In this chapter we study uniform trajectory attractors for non-autonomous nonlinear systems. In Sect. 8.1 we establish the existence of uniform trajectory attractor for non-autonomous reaction-diffusion equations with Carathéodory’s nonlinearity. Section 8.2 devoted to structural properties of the uniform global attractor for non-autonomous reaction-diffusion system in which uniqueness of Cauchy problem is not guarantied. In the case of translation compact time-depended coefficients it is established that the uniform global attractor consists of bounded complete trajectories of corresponding multi-valued processes. Under additional sign conditions on non-linear term we also prove (and essentially use previous result) that the uniform global attractor is, in fact, bounded set in \(L^{\infty }(\varOmega )\cap H_0^1(\varOmega )\). Section 8.3 devoted to uniform trajectory attractors for nonautonomous dissipative dynamical systems. As applications we may consider FitzHugh–Nagumo system (signal transmission across axons), complex Ginzburg–Landau equation (theory of superconductivity), Lotka–Volterra system with diffusion (ecology models), Belousov–Zhabotinsky system (chemical dynamics) and many other reaction-diffusion type systems from Sect. 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    i.e. \(V_i\) is a real reflexive separable Banach space continuously and densely embedded into a real Hilbert space H, H is identified with its topologically conjugated space \(H^*\), \(V_i^*\) is a dual space to \(V_i\). So, there is a chain of continuous and dense embeddings: \(V_i\subset H\equiv H^*\subset V_i^*\).

References

  1. Anguiano, M., Caraballo, T., Real, J., Valero, J.: Pullback attractors for reaction-diffusion equations in some unbounded domains with an \(H^{-1}\)-valued non-autonomous forcing term and without uniqueness of solutions. Discret. Contin. Dyn. Syst. B 14, 307–326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Nauka, Moscow (1989)

    MATH  Google Scholar 

  3. Ball, J.M.: Global attractors for damped semilinear wave equations. Discret. Contin. Dyn. Syst. 10, 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunovsky, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations. Dyn. Rep. 1, 57–89 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caraballo, T., Marin-Rubio, P., Robinson, J.: A comparison between two theories for multi-valued semiflows and their asymptotic behavior. Set-valued anal. 11, 297–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  7. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  8. Kapustyan, O.V., Valero, J.: On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems. J. Math. Anal. Appl. 323, 614–633 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kapustyan, O.V., Valero, J.: On the Kneser property for the complex Ginzburg–Landau equation and the Lotka–Volterra system with diffusion. J. Math. Anal. Appl. 357, 254–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kapustyan, O.V., Valero, J.: Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions. Int. J. Bifurc. Chaos 20, 2723–2734 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kapustyan, O.V., Kasyanov, P.O., Valero, J., Zgurovsky, M.Z.: Structure of uniform global attractor for general non-autonomous reaction-diffusion system. Continuous and Distributed Systems: Theory and Applications. Solid Mechanics and Its Applications. 211, 163–180 (2014). doi:10.1007/978-3-319-03146-0_12

  12. Kapustyan, O.V., Melnik, V.S., Valero, J., Yasinsky, V.V.: Global Attractors of Multi-valued Dynamical Systems and Evolution Equations Without Uniqueness. Naukova Dumka, Kyiv (2008)

    Google Scholar 

  13. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Gauthier-Villar, Paris (1969)

    MATH  Google Scholar 

  14. Melnik, V.S., Valero, J.: On attractors of multi-valued semi-flows and differential inclusions. Set-valued Anal. 6, 83–111 (1998)

    Article  MathSciNet  Google Scholar 

  15. Melnik, V.S., Valero, J.: On global attractors of multi-valued semiprocesses and nonautonomous evolution inclusions. Set-valued Anal. 8, 375–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rocha, C.: Examples of attractors in scalar reaction-diffusion equations. J. Differ. Equ. 73, 178–195 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rocha, C.: Properties of the attractor of a scalar parabolic PDE. J. Dyn. Differ. Equ. 3, 575–591 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rocha, C., Fiedler, B.: Heteroclinic orbits of semilinear parabolic equations. J. Differ. Equ. 125, 239–281 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  20. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  21. Vishik, M.I., Zelik, S.V., Chepyzhov, V.V.: Strong trajectory attractor of dissipative reaction-diffusion system. Doklady RAN 435(2), 155–159 (2010)

    MATH  Google Scholar 

  22. Wang, Y., Zhou, S.: Kernel sections and uniform attactors of multi-valued semiprocesses. J. Differ. Equ. 232, 573–622 (2007)

    Article  MATH  Google Scholar 

  23. Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Long-time Behavior of Evolution Inclusions Solutions in Earth Data Analysis. Springer, Berlin (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Z. Zgurovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zgurovsky, M.Z., Kasyanov, P.O. (2018). Uniform Trajectory Attractors for Non-autonomous Nonlinear Systems. In: Qualitative and Quantitative Analysis of Nonlinear Systems. Studies in Systems, Decision and Control, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-59840-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59840-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59839-0

  • Online ISBN: 978-3-319-59840-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics