Advertisement

Thermal Characteristics of Boost Converters

  • Alhussein AlbarbarEmail author
  • Canras Batunlu
Chapter
  • 868 Downloads

Abstract

The thermal behavior of DC–DC boost converters is studied in this chapter. A mathematical electrothermal model, developed in previous chapters, is embedded in dSPACE real-time system to predict temperature and power losses of four physically built DC–DC Boost converter units, designed with three topologically different insulated gate bipolar transistors (IGBTs) and one with a SiC MOSFET device. Subsequently, predicted power losses are used by finite element models (derived in COMSOL) to estimate heat distribution in the monitored devices.

Keywords

DC–DC boost converters Insulated gate bipolar transistors (IGBT) Thermal characteristics Photovoltaic solar energy systems 

References

  1. 1.
    P. Lefranc, D. Planson, H. Morel, D. Bergogne, Analysis of the dynamic avalanche of punch through insulated gate bipolar transistor (PT-IGBT). Solid-State Electron. 53(9), 944–954 (2009)CrossRefGoogle Scholar
  2. 2.
    R. Chibante, A. Araujo, A. Carvalho, A new physics based SPICE model for NPT IGBTs, in The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003. IECON ’03, vol. 2, pp. 1156–1161 (2003)Google Scholar
  3. 3.
    M. Honsberg, T. Radke, 3-level IGBT modules with trench gate IGBT and their thermal analysis in UPS, PFC and PV operation modes, in 13th European Conference on Power Electronics and Applications, 2009. EPE ’09, pp. 1–7 (2009)Google Scholar
  4. 4.
    Y. Tang, B. Wang, M. Chen, B. Liu, Simulation model and parameter extraction of field-stop (FS) IGBT. Microelectron. Reliab. 52(12), 2920–2931 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Kang, A. Caiafa, E. Santi, J.L. Hudgins, P.R. Palmer, Characterization and modeling of high-voltage field-stop IGBTs. IEEE Trans. Ind. Appl. 39(4), 922–928 (2003)CrossRefGoogle Scholar
  6. 6.
    L. Maresca, G. Romano, G. Breglio, A. Irace, Physically based analytical model of the blocking I–V curve of Trench IGBTs. Microelectron. Reliab. 53(9–11), 1783–1787 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Caiafa, A. Snezhko, J.L. Hudgins, E. Santi, R. Prozorov, IGBT operation at cryogenic temperatures: non-punch-through and punch-through comparison, in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, vol 4, pp. 2960–2966Google Scholar
  8. 8.
    W. Storr, Insulated gate bipolar transistor or IGBT transistor, Basic Electronics Tutorials. [Online]. Available: http://www.electronics-tutorials.ws/power/insulated-gate-bipolar-transistor.html. Accessed 17 Jan 2016
  9. 9.
    S. Danyali, S.A.K. Mozaffari Niapour, S.H. Hosseini, G.B. Gharehpetian, M. Sabahi, New single-stage single-phase three-input DC-AC boost converter for stand-alone hybrid PV/FC/UC systems. Electr. Power Syst. Res. 127, 1–12 (2015)CrossRefGoogle Scholar
  10. 10.
    A. de Pádua Finazzi, G.B. de Lima, L.C. de Freitas, E.A.A. Coelho, V.J. Farias, L.C.G. Freitas, Proposal for preprogrammed control applied to a current-sensorless PFC boost converter. Microprocess. Microsyst. 38(5), 443–450 (2014)CrossRefGoogle Scholar
  11. 11.
    F. Musavi, M. Edington, W. Eberle, W.G. Dunford, Control loop design for a PFC boost converter with ripple steering. IEEE Trans. Ind. Appl. 49(1), 118–126 (2013)CrossRefGoogle Scholar
  12. 12.
    S.S. Saha, Efficient soft-switched boost converter for fuel cell applications. Int. J. Hydrog. Energy 36(2), 1710–1719 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, M. Li, X. Ji, X. Luo, M. Wang, Y. Zhang, A comparative study of the maximum power point tracking methods for PV systems. Energy Convers. Manag. 85, 809–816 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Xia, Z. Wang, T. Shi, Z. Song, A novel cascaded boost chopper for the wind energy conversion system based on the permanent magnet synchronous generator. IEEE Trans. Energy Convers. 28(3), 512–522 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Mohan, T.M. Undeland, Power Electronics: Converters, Applications, and Design (Wiley, New Delhi, 2007)Google Scholar
  16. 16.
    HCPL-4502-300 datasheet—Single Channel, High Speed Optocouplers. [Online]. http://www.digchip.com/datasheets/parts/datasheet/021/HCPL-4502-300.php. Accessed 07 Feb 2016
  17. 17.
    TD351 Advanced IGBT/MOSFET driver—STMicroelectronics. [Online]. Available http://www.st.com/web/en/catalog/sense_power/FM142/CL1501/SC907/PF87078. Accessed 07 Feb 2016
  18. 18.
    Home—dSPACE. [Online]. https://www.dspace.com/en/pub/home.cfm. Accessed 07 Feb 2016
  19. 19.
    ACS71 pdf Datasheet P1 Part Num—IC-ON-LINE. [Online]. http://www.datasheet.hk/search.php?part=acs71&stype=part. Accessed 07 Feb 2016
  20. 20.
    C. Bernal, P.M. Gaudo, A. Gallego, A. Otin, J.-M. Burdio, Half-bridge resonant inverter for domestic induction heating based on silicon carbide technology, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2218–2222 (2012)Google Scholar
  21. 21.
    A. Anthon, Z. Zhang, M.A.E. Andersen, A high power boost converter for PV Systems operating up to 300 kHz using SiC devices, in Electronics and Application Conference and Exposition (PEAC), 2014 International, pp. 302–307 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of EngineeringThe Manchester Metropolitan UniversityManchesterUnited Kingdom

Personalised recommendations