Advertisement

Thermal Stress Effects on Reliability

  • Alhussein AlbarbarEmail author
  • Canras Batunlu
Chapter

Abstract

In this chapter, thermomechanical modeling and effects of thermal stress on reliability of power electronic converters are presented. This was carried out taking account of variations in wind and irradiance characteristics. A mitigating technique is also described by first, developing realistic full scale (FS), and partial scale (PS) induction generator models combined with a two level back-to-back PEC. Subsequently, an algorithm was derived to mitigate temperature effects by controlling its switching pattern. Algorithm’s effectiveness was experimentally verified using a three-phase DC–AC inverter module attached to scaled wind turbine system.

Keywords

Reliability Power electronic converters Wind turbines DC–AC inverters Full scale and partial scale induction generators 

References

  1. 1.
    L. Benbahouche, A. Merabet, A. Zegadi, An improved understanding of IGBT behavior under thermal stress, in 26th International Conference on Microelectronics, 2008. MIEL 2008 (2008) pp. 189–192Google Scholar
  2. 2.
    A. de Pádua Finazzi, G.B. de Lima, L.C. de Freitas, E.A.A. Coelho, V.J. Farias, L.C.G. Freitas, Proposal for preprogrammed control applied to a current-sensorless PFC boost converter. Microprocess. Microsyst. 38(5), 443–450 (Temmuz 2014)Google Scholar
  3. 3.
    A. Khosroshahi, M. Abapour, M. Sabahi, Reliability evaluation of conventional and interleaved DC–DC boost converters. IEEE Trans. Power Electron. 30(10), 5821–5828 (Ekim 2015)Google Scholar
  4. 4.
    M. Imaizumi, N. Miura, Characteristics of 600, 1200, and 3300 V planar SiC-MOSFETs for energy conversion applications. IEEE Trans. Electron Devices 62(2), 390–395 (ubat 2015)Google Scholar
  5. 5.
    M.-C. Lee, A.Q. Huang, An injection efficiency model to characterize the injection capability and turn-off speed for >10 kV 4H-SiC IGBTs. Solid-State Electron. 93, 27–39 (2014)CrossRefGoogle Scholar
  6. 6.
    I. Pesic, D. Navarro, M. Miyake, M. Miura-Mattausch, Degradation of 4H-SiC IGBT threshold characteristics due to SiC/SiO2 interface defects. Solid-State Electron. 101, 126–130 (Kasım 2014)Google Scholar
  7. 7.
    A. Anthon, Z. Zhang, M.A.E. Andersen, A high power boost converter for PV Systems operating up to 300 kHz using SiC devices, in Electronics and Application Conference and Exposition (PEAC), 2014 International (2014), pp. 302–307Google Scholar
  8. 8.
    K. Takao, H. Ohashi, Accurate power circuit loss estimation method for power converters with Si-IGBT and SiC-diode hybrid pair. IEEE Trans. Electron Devices 60(2), 606–612 (ubat 2013)Google Scholar
  9. 9.
    X. Zhong, X. Wu, W. Zhou, K. Sheng, An All-SiC high-frequency boost DC–DC converter operating at 320 °C junction temperature. IEEE Trans. Power Electron. 29(10), 5091–5096 (Ekim 2014)Google Scholar
  10. 10.
    F. Blaabjerg, M. Liserre, K. Ma, Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48(2), 708–719 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Ensslin, M. Durstewitz, B. Hahn, B. Lange, K. Rohrig, German Wind Energy Report. ISET (2005)Google Scholar
  12. 12.
    O. S. Senturk, L. Helle, S. Munk-Nielsen, P. Rodriguez, R. Teodorescu, Converter structure-based power loss and static thermal modeling of the press-pack IGBT three-level ANPC VSC applied to multi-MW wind turbines. IEEE Trans. Ind. Appl. 47(6), 2505–2515 (Kasım 2011)Google Scholar
  13. 13.
    J.-S. Lee, K.B. Lee, Variable DC-link voltage algorithm with a wide range of maximum power point tracking for a two-string PV system. Energies 6(1), 58–78 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Wang, K. Ma, F. Blaabjerg, Design for reliability of power electronic systems, in IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 33–44 (2012)Google Scholar
  15. 15.
    D. Zhou, F. Blaabjerg, M. Lau, M. Tonnes, Thermal cycling overview of multi-megawatt two-level wind power converter at full grid code operation. IEEJ J. Ind. Appl. 2(4), 173–182 (2013)Google Scholar
  16. 16.
    T. Ackermann, Wind Power in Power Systems (Wiley, 2005)Google Scholar
  17. 17.
    H. Ye, M. Lin, C. Basaran, Failure modes and FEM analysis of power electronic packaging. Finite Elem. Anal. Des. 38(7), 601–612 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    L. Xu, Y. Liu, S. Liu, Modeling and simulation of power electronic modules with microchannel coolers for thermo-mechanical performance. Microelectron. Reliab. 54(12), 2824–2835 (Aralık 2014)Google Scholar
  19. 19.
    L. Anand, Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. J. Eng. Mater. Technol. 104(1), 12–17 (Ocak 1982)Google Scholar
  20. 20.
    K. Mysore, G. Subbarayan, V. Gupta, R. Zhang, Constitutive and aging behavior of Sn3.0Ag0.5Cu solder alloy. IEEE Trans. Electron. Packag. Manuf. 32(4), 221–232 (Ekim 2009)Google Scholar
  21. 21.
    A. Radan, Improved design of three-level NPC inverters in comparison to two-level inverters (2009)Google Scholar
  22. 22.
    “Online Materials Information Resource,” 2011. [Online]. Available: http://www.matweb.com/. Accessed 15 Jul 2014.
  23. 23.
    H. Kuhn, A. Mertens, On-line junction temperature measurement of IGBTs based on temperature sensitive electrical parameters, in 13th European Conference on Power Electronics and Applications, 2009. EPE ’09 (2009), pp. 1–10Google Scholar
  24. 24.
    Y. Liu, Power Electronic Packaging: Design, Assembly Process, Reliability and Modeling (Springer Science & Business Media, Berlin, 2012)CrossRefGoogle Scholar
  25. 25.
    F. Blaabjerg, K. Ma, D. Zhou, Power electronics and reliability in renewable energy systems, in 2012 IEEE International Symposium on Industrial Electronics (ISIE) (2012), pp. 19–30Google Scholar
  26. 26.
    L. Zhou, J. Wu, P. Sun, X. Du, Junction temperature management of IGBT module in power electronic converters. Microelectron. Reliab. 54(12), 2788–2795 (Aralık 2014)Google Scholar
  27. 27.
    S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, P. Tavner, An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1994)Google Scholar
  29. 29.
    H. Wang, K. Ma, F. Blaabjerg, Design for reliability of power electronic systems, in IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 33–44Google Scholar
  30. 30.
    L. Benbahouche, A. Merabet, A. Zegadi, An improved understanding of IGBT behavior under thermal stress, in 26th International Conference on Microelectronics, 2008. MIEL 2008 (2008), pp. 189–192Google Scholar
  31. 31.
    J. Lutz, H. Schlangenotto, U. Scheuermann, D.R. Doncker, Semiconductor Power Devices—Physics, Characteristics (Springer, Berlin Heidelberg, 2011)CrossRefGoogle Scholar
  32. 32.
    A. Niesłony, Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components. Mech. Syst. Signal Process. 23(8), 2712–2721 (Kasım 2009)Google Scholar
  33. 33.
    M. Matsuishi, T. Endo, Fatigue of metals subjected to varying stress. Jpn. Soc. Mech. Eng. Fukuoka Jpn. 68(2), 37–40 (1968)Google Scholar
  34. 34.
    M. Denk, M.-M. Bakran, M. Denk, M.-M. Bakran, Online junction temperature cycle recording of an IGBT power module in a hybrid car, online junction temperature cycle recording of an IGBT power module in a hybrid car. Adv. Power Electron. Adv. Power Electron. 2015(2015), e652389 (2015)Google Scholar
  35. 35.
    S.D. Downing, D.F. Socie, Simple rainflow counting algorithms. Int. J. Fatigue 4(1), 31–40 (1982)CrossRefGoogle Scholar
  36. 36.
    A. Niesłony, Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components. Mech. Syst. Signal Process. 23(8), 2712–2721 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of EngineeringThe Manchester Metropolitan UniversityManchesterUnited Kingdom

Personalised recommendations