Skip to main content
  • 1345 Accesses

Abstract

The implementation of an electrothermal, 3D finite element model for a multichip single IGBT power module is presented in this chapter. The model was built with COMSOL finite element package. Based on the thermal profile extracted from finite element (FE) analysis, a compact electrothermal model was implemented in discrete z-domain with MATLAB/Simulink for continuous temperature estimations over each layer based on the heat interactions and coupling effect across IGBT/diode chips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.K. Khanna, Power IGBT modules, in Insulated Gate Bipolar Transistor IGBT Theory and Design (Wiley, New York, 2003), pp. 465–498

    Google Scholar 

  2. A. Volke, M. Hornkamp, I.G.B.T. Modules, Technologies Driver and Application (Infineon Technologies, Neubiberg, 2012)

    Google Scholar 

  3. V.K. Khanna, The Insulated Gate Bipolar Transistor (IEEE Press, Piscataway, 2003)

    Book  Google Scholar 

  4. Dynex Power Semiconductors, DIM1200ASM45 DATASHEET, 2013. http://www.dynexpowersemiconductors.com/product-area/igbt-modules

  5. N. Mohan, T.M. Undeland, Power Electronics: Converters, Applications, and Design (Wiley India, Darya Ganj, 2007)

    Google Scholar 

  6. K. Ma, A.S. Bahman, S. Beczkowski, F. Blaabjerg, Complete loss and thermal model of power semiconductors including device rating information. IEEE Trans. Power Electron. 30(5), 2556–2569 (2015)

    Article  Google Scholar 

  7. K. Ma, F. Blaabjerg, Reliability-cost models for the power switching devices of wind power converters, in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (2012), pp. 820–827

    Google Scholar 

  8. D. Zhou, F. Blaabjerg, M. Lau, M. Tonnes, Thermal cycling overview of multi-megawatt two-level wind power converter at full grid code operation. IEEJ J. Ind. Appl. 2(4), 173–182 (2013)

    Google Scholar 

  9. D. Wigger, H.-G. Eckel, Comparison of chip- and module-measurements with high power IGBTs and RC-IGBTs, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–8

    Google Scholar 

  10. A. Blinov, D. Vinnikov, T. Jalakas, Loss calculation methods of half-bridge square-wave inverters. Electron. Electr. Eng. 113(7), 9–14 (2011)

    Google Scholar 

  11. G. Orfanoudakis, S.M. Sharkh, M. Yuratich, M. Abusara, Loss comparison of two and three-level inverter topologies, in 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010) (2010), pp. 1–6

    Google Scholar 

  12. Z. Zhou, M.S. Kanniche, S.G. Butcup, P. Igic, High-speed electro-thermal simulation model of inverter power modules for hybrid vehicles. IET Electr. Power Appl. 5(8), 636–643 (2011)

    Article  Google Scholar 

  13. J.P. Holman, Heat Transfer (McGraw Hill Higher Education, New York, 2010)

    Google Scholar 

  14. W. Janna, Engineering Heat Transfer, 3rd edn. (2009)

    Google Scholar 

  15. W. Cauer, Die Verwirklichung der Wechselstromwiderstände vorgeschriebener Frequenzabhängigkeit. Electr. Eng. 17(4), pp. 355–388 (1926)

    Google Scholar 

  16. R.M. Foster, Academic and theoretical aspects of circuit theory. Proc. IRE 5, 866–871 (1962)

    Article  MathSciNet  Google Scholar 

  17. Q. Chen, X. Yang, Z. Wang, L. Zhang, M. Zheng, Thermal design considerations for integrated power electronics modules based on temperature distribution cases study, in IEEE Power Electronics Specialists Conference, 2007. PESC 2007 (2007), pp. 1029–1035

    Google Scholar 

  18. W. Kiffe, G. Wachutka, Combination of thermal subsystems modelled by rapid circuit transformation. EDA Publ. Assoc. (2007)

    Google Scholar 

  19. D. Schweitzer, H. Pape, L. Chen, Transient measurement of the junction-to-case thermal resistance using structure functions: chances and limits, in Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2008. Semi-Therm 2008 (2008), pp. 191–197

    Google Scholar 

  20. M. Musallam, C.M. Johnson, Impact of different control schemes on the life consumption of power electronic modules for variable speed wind turbines, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–9

    Google Scholar 

  21. B. Vermeersch, G. De Mey, A fixed-angle heat spreading model for dynamic thermal characterization of rear-cooled substrates, in Twenty Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2007 (SEMI-THERM 2007) (2007), pp. 95–101

    Google Scholar 

  22. A. Hensler, C. Herold, J. Lutz, M. Thoben, Thermal Impedance Monitoring During Power Cycling Tests, Presented at the PCIM Europe (Berlin, 2011), pp. 241–246

    Google Scholar 

  23. Y. Xu, D.C. Hopkins, Misconception of thermal spreading angle and misapplication to IGBT power modules, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 545–551

    Google Scholar 

  24. F.N. Masana, A closed form solution of junction to substrate thermal resistance in semiconductor chips. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 19(4), 539–545 (1996)

    Google Scholar 

  25. D. Schweitzer, The junction-to-case thermal resistance: a boundary condition dependent thermal metric, in 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2010. (SEMI-THERM 2010) (2010), pp. 151–156

    Google Scholar 

  26. W. Storr, Insulated gate bipolar transistor or igbt transistor, in Basic Electronics Tutorials. http://www.electronics-tutorials.ws/power/insulated-gate-bipolar-transistor.html. Accessed 17 Jan 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alhussein Albarbar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Albarbar, A., Batunlu, C. (2018). Fundamental Thermal Characterization of PECs. In: Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-59828-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59828-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59827-7

  • Online ISBN: 978-3-319-59828-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics