Skip to main content

Abstract

This chapter reviews recent work done on thermal characteristics of power electronic converters and their electronic components. The review process is divided into electrothermal, thermomechanical modeling, lifetime analysis of semiconductor switching elements, and materials properties effects on the reliability of power electronic converters in wind and solar energy applications. Achievements, shortfalls, and remaining tasks for future investigations are also outlined throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Foster, A reactance theorem. Bell Syst. Tech. J. 3(2), 259–267 (1924)

    Article  Google Scholar 

  2. W. Cauer, Die Verwirklichung der Wechselstromwiderstände vorgeschriebener Frequenzabhängigkeit. Arch. Elktrotech. 17, 355–388 (1926)

    Article  Google Scholar 

  3. R.M. Foster, Academic and theoretical aspects of circuit theory. Proc. IRE 5, 866–871 (1962)

    Article  MathSciNet  Google Scholar 

  4. B. Du, J.L. Hudgins, E. Santi, A.T. Bryant, P.R. Palmer, H.A. Mantooth, Transient electrothermal simulation of power semiconductor devices. IEEE Trans. Power Electron. 25(1), 237–248 (2010)

    Article  Google Scholar 

  5. J.R. Culham, M.M. Yovanovich, T.F. Lemczyk, Thermal characterization of electronic packages using a three-dimensional Fourier series solution. J. Electron. Packag. 122(3), 233–239 (2000)

    Article  Google Scholar 

  6. P. Widas, Introduction to finite element analysis (1997), http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/num/widas/history.html

  7. J.J. Barnes, R.J. Lomax, Finite-element methods in semiconductor device simulation. IEEE Trans. Electron Devices 24(8), 1082–1089 (1977)

    Article  Google Scholar 

  8. J.T. Hsu, L. Vu-Quoc, A rational formulation of thermal circuit models for electrothermal simulation. I. Finite element method [power electronic systems]. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 43(9), 721–732 (1996)

    Article  Google Scholar 

  9. A.R. Hefner, D.L. Blackburn, Simulating the dynamic electrothermal behavior of power electronic circuits and systems. IEEE Trans. Power Electron. 8(4), 376–385 (1993)

    Article  Google Scholar 

  10. V. Székely, THERMODEL: a tool for compact dynamic thermal model generation. Microelectron. J. 29(4–5), 257–267 (1998)

    Article  Google Scholar 

  11. P.E. Bagnoli, C.E. Casarosa, M. Ciampi, E. Dallago, Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory. IEEE Trans. Power Electron. 13(6), 1208–1219 (1998)

    Article  Google Scholar 

  12. M. Rencz, V. Szekely, A. Poppe, B. Courtois, Inclusion of RC compact models of packages into board level thermal simulation tools, in Semiconductor Thermal Measurement and Management, 2002. Eighteenth Annual IEEE Symposium (2002), pp. 71–76

    Google Scholar 

  13. M. Ciappa, W. Fichtner, T. Kojima, Y. Yamada, Y. Nishibe, Extraction of accurate thermal compact models for fast electro-thermal simulation of IGBT modules in hybrid electric vehicles. Microelectron. Reliab. 45(9–11), 1694–1699 (2005)

    Article  Google Scholar 

  14. F. Christiaens, B. Vandevelde, E. Beyne, R. Mertens, J. Berghmans, A generic methodology for deriving compact dynamic thermal models, applied to the PSGA package. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 21(4), 565–576 (1998)

    Article  Google Scholar 

  15. F.N. Masana, A closed form solution of junction to substrate thermal resistance in semiconductor chips. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 19(4), 539–545 (1996)

    Article  Google Scholar 

  16. F.N. Masana, A new approach to the dynamic thermal modelling of semiconductor packages. Microelectron. Reliab. 41(6), 901–912 (2001)

    Article  Google Scholar 

  17. T. Poller, S. D’Arco, M. Hernes, J. Lutz, Influence of thermal cross-couplings on power cycling lifetime of IGBT power modules, in 2012 7th International Conference on Integrated Power Electronics Systems (CIPS) (2012), pp. 1–6

    Google Scholar 

  18. M. Janicki, G. De Mey, A. Napieralski, Transient thermal analysis of multilayered structures using Green’s functions. Microelectron. Reliab. 42(7), 1059–1064 (2002)

    Article  Google Scholar 

  19. B. Vermeersch, G. De Mey, A fixed-angle heat spreading model for dynamic thermal characterization of rear-cooled substrates, in Twenty Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007 (2007), pp. 95–101

    Google Scholar 

  20. I. Swan, A. Bryant, P. Mawby, Fast thermal models for power device packaging, in IEEE Industry Applications Society Annual Meeting, 2008. IAS’08 (2008), pp. 1–8

    Google Scholar 

  21. A. Augustin, T. Hauck, A new approach to boundary condition independent compact dynamic thermal models, in Twenty Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007 (2007), pp. 228–232

    Google Scholar 

  22. A.M. Darwish, A. Bayba, FET Gate Length Impact on Reliability (2007), pp. 311–314

    Google Scholar 

  23. W. Kiffe, G. Wachutka, Combination of thermal subsystems modelled by rapid circuit transformation. EDA Publ. Assoc. (2007)

    Google Scholar 

  24. A. Castellazzi, M. Johnson, M. Piton, M. Mermet-Guyennet, Experimental analysis and modeling of multi-chip IGBT modules short-circuit behavior, in Power Electronics and Motion Control Conference, 2009. IPEMC’09. IEEE 6th International (2009), pp. 285–290

    Google Scholar 

  25. D. Schweitzer, H. Pape, L. Chen, Transient measurement of the junction-to-case thermal resistance using structure functions: chances and limits, in Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2008. Semi-Therm 2008 (2008), pp. 191–197

    Google Scholar 

  26. R. Hocine, S.H. Pulko, A.B. Stambouli, A. Saidane, TLM method for thermal investigation of IGBT modules in PWM mode. Microelectron. Eng. 86(10), 2053–2062 (2009)

    Article  Google Scholar 

  27. A. Stupar, D. Bortis, U. Drofenik, J.W. Kolar, Advanced setup for thermal cycling of power modules following definable junction temperature profiles, in Power Electronics Conference (IPEC), 2010 International (2010), pp. 962–969

    Google Scholar 

  28. A. Hensler, C. Herold, J. Lutz, M. Thoben, Thermal impedance monitoring during power cycling tests. Paper presented at the PCIM Europe, Berlin (2011), pp. 241–246

    Google Scholar 

  29. T. Gradinger, G. Riedel, Thermal networks for time-variant cooling systems: modeling approach and accuracy requirements for lifetime prediction, in 2012 7th International Conference on Integrated Power Electronics Systems (CIPS) (2012), pp. 1–6

    Google Scholar 

  30. R. Skuriat, C.M. Johnson, Thermal performance of baseplate and direct substrate cooled power modules, in 4th IET Conference on Power Electronics, Machines and Drives, 2008. PEMD 2008 (2008), pp. 548–552

    Google Scholar 

  31. C. Bernal, P.M. Gaudo, A. Gallego, A. Otin, J.-M. Burdio, Half-bridge resonant inverter for domestic induction heating based on silicon carbide technology, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 2218–2222

    Google Scholar 

  32. T. Azoui, P. Tounsi, J.-M. Dorkel, Innovative methodology to extract dynamic compact thermal models: application to power devices, in 2010 16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC) (2010), pp. 1–5

    Google Scholar 

  33. D. Schweitzer, The junction-to-case thermal resistance: a boundary condition dependent thermal metric, in 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2010. SEMI-THERM 2010 (2010), pp. 151–156

    Google Scholar 

  34. Z. Luo, H. Ahn, M.A.E. Nokali, A thermal model for insulated gate bipolar transistor module. IEEE Trans. Power Electron. 19(4), 902–907 (2004)

    Article  Google Scholar 

  35. Y. Yu, T.-Y.T. Lee, V.A. Chiriac, Compact thermal resistor-capacitor-network approach to predicting transient junction temperatures of a power amplifier module. IEEE Trans. Compon. Packag. Manuf. Technol. 2(7), 1172–1181 (2012)

    Article  Google Scholar 

  36. U. Drofenik, J.W. Kolar, A thermal model of a forced-cooled heat sink for transient temperature calculations employing a circuit simulator. IEEJ Trans. Ind. Appl. 126(7), 841–851 (2006)

    Article  Google Scholar 

  37. U. Drofenik, D. Cottet, A. Müsing, J. Meyer, J.W. Kolar, Modelling the thermal coupling between internal power semiconductor dies of a water-cooled 3300 V/1200 A HiPak IGBT module, in PCIM Eur. -CD-ROM Ed., no. 83 (2007)

    Google Scholar 

  38. D. Zhou, F. Blaabjerg, M. Lau, M. Tonnes, Thermal cycling overview of multi-megawatt two-level wind power converter at full grid code operation. IEEJ J. Ind. Appl. 2(4), 173–182 (2013)

    Google Scholar 

  39. A. Blinov, D. Vinnikov, T. Jalakas, Loss calculation methods of half-bridge square-wave inverters. Electron. Electr. Eng. 113(7) (2011)

    Google Scholar 

  40. W. Rui, W. Jialiang, H. Jian, C. Zhongyuan, W. Quanqing, J. Na, W. Chenghao, A power loss calculation method of IGBT three-phase SPWM converter, in 2012 Second International Conference on Intelligent System Design and Engineering Application (ISDEA) (2012), pp. 1180–1183

    Google Scholar 

  41. V. Ivakhno, V.V. Zamaruiev, O. Ilina, Estimation of semiconductor switching losses under hard switching using Matlab/Simulink subsystem. Electr. Control Commun. Eng. 2(1), 20–26 (2013)

    Google Scholar 

  42. C. Santos, F. Antunes, Losses Comparison Among Carrier-Based PWM Modulation Strategies in Three-Level Neutral-Point-Clamped Inverter (Spain, 2011)

    Google Scholar 

  43. G. Orfanoudakis, S.M. Sharkh, M. Yuratich, M. Abusara, Loss comparison of two and three-level inverter topologies, in 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010) (2010), pp. 1–6

    Google Scholar 

  44. A. Radan, Improved Design of Three-Level NPC Inverters in Comparison to Two-Level Inverters (2009)

    Google Scholar 

  45. I. Colak, E. Kabalci, R. Bayindir, Review of multilevel voltage source inverter topologies and control schemes. Energy Convers. Manag. 52(2), 1114–1128 (2011)

    Article  Google Scholar 

  46. Z. Zhou, M.S. Kanniche, S.G. Butcup, P. Igic, High-speed electro-thermal simulation model of inverter power modules for hybrid vehicles. IET Electr. Power Appl. 5(8), 636–643 (2011)

    Article  Google Scholar 

  47. H. Huang, A.T. Bryant, P.A. Mawby, Electro-thermal modelling of three phase inverter, in Proceedings of the 2011—14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–7

    Google Scholar 

  48. K. Ma, F. Blaabjerg, The impact of power switching devices on the thermal performance of a 10 MW wind power NPC converter. Energies 5(7), 2559–2577 (2012)

    Article  Google Scholar 

  49. K. Ma, F. Blaabjerg, M. Liserre, Thermal analysis of multilevel grid side converters for 10 MW wind turbines under low voltage ride through, in 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 2117–2124

    Google Scholar 

  50. D. Zhou, F. Blaabjerg, M. Lau, M. Tonnes, Thermal analysis of multi-MW two-level wind power converter, in IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 5858–5864

    Google Scholar 

  51. R. Pittini, S. D’Arco, M. Hernes, A. Petterteig, Thermal stress analysis of IGBT modules in VSCs for PMSG in large offshore wind energy conversion systems, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–10

    Google Scholar 

  52. K. Ma, F. Blaabjerg, Reliability-cost models for the power switching devices of wind power converters, in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (2012), pp. 820–827

    Google Scholar 

  53. D. Wigger, H.-G. Eckel, Comparison of chip- and module-measurements with high power IGBTs and RC-IGBTs, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–8

    Google Scholar 

  54. K. Ma, A.S. Bahman, S. Beczkowski, F. Blaabjerg, Complete loss and thermal model of power semiconductors including device rating information. IEEE Trans. Power Electron. 30(5), 2556–2569 (2015)

    Article  Google Scholar 

  55. J. Mi, Y.-F. Li, Y.-J. Yang, W. Peng, H.-Z. Huang, Thermal cycling life prediction of Sn-3.0Ag-0.5Cu solder joint using type-I censored data. Sci. World J. 2014, 807693 (2014)

    Article  Google Scholar 

  56. L. Feller, S. Hartmann, D. Schneider, Lifetime analysis of solder joints in high power IGBT modules for increasing the reliability for operation at 150 °C. Microelectron. Reliab. 48(8–9), 1161–1166 (2008)

    Article  Google Scholar 

  57. B. Ji, X. Song, E. Sciberras, W. Cao, Y. Hu, V. Pickert, Multiobjective design optimization of IGBT power modules considering power cycling and thermal cycling. IEEE Trans. Power Electron. 30(5), 2493–2504 (2015)

    Article  Google Scholar 

  58. M. Bouarroudj, Z. Khatir, J.P. Ousten, L. Dupont, S. Lefebvre, F. Badel, Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules, in 2007 European Conference on Power Electronics and Applications (2007), pp. 1–10

    Google Scholar 

  59. H. Ye, M. Lin, C. Basaran, Failure modes and FEM analysis of power electronic packaging. Finite Elem. Anal. Des. 38(7), 601–612 (2002)

    Article  MATH  Google Scholar 

  60. L. Anand, Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. J. Eng. Mater. Technol. 104(1), 12–17 (1982)

    Article  Google Scholar 

  61. G.Z. Wang, Z.N. Cheng, K. Becker, J. Wilde, Applying Anand model to represent the viscoplastic deformation behavior of solder alloys. J. Electron. Packag. 123(3), 247–253 (1998)

    Article  Google Scholar 

  62. M. Motalab, M. Mustafa, J.C. Suhling, J. Zhang, J. Evans, M.J. Bozack, P. Lall, Correlation of reliability models including aging effects with thermal cycling reliability data, in Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd (2013), pp. 986–1004

    Google Scholar 

  63. Y. Zhou, L. Xu, S. Liu, Optimization for warpage and residual stress due to reflow process in IGBT modules based on pre-warped substrate. Microelectron. Eng. 136, 63–70 (2015)

    Article  Google Scholar 

  64. G. Deboy, H. Hulsken, H. Mitlehner, R. Rupp, A comparison of modern power device concepts for high voltage applications: field stop-IGBT, compensation devices and SiC devices, in Bipolar/BiCMOS Circuits and Technology Meeting, 2000. Proceedings of the 2000 (2000), pp. 134–141

    Google Scholar 

  65. L. Xu, Y. Liu, S. Liu, Modeling and simulation of power electronic modules with microchannel coolers for thermo-mechanical performance. Microelectron. Reliab. 54(12), 2824–2835 (2014)

    Article  Google Scholar 

  66. R. Dudek, R. Doring, P. Sommer, B. Seiler, K. Kreyssig, H. Walter, M. Becker, M. Gunther, Combined experimental- and FE-studies on sinter-Ag behaviour and effects on IGBT-module reliability, in 2014 15th International Conference on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems (Eurosime) (2014), pp. 1–9

    Google Scholar 

  67. L. Braunwarth, S. Amrhein, T. Schreck, M. Kaloudis, Ecological comparison of soldering and sintering as die-attach technologies in power electronics. J. Clean. Prod. 102, 408–417 (2015)

    Article  Google Scholar 

  68. G. Chen, L. Yu, Y.-H. Mei, X. Li, X. Chen, G.-Q. Lu, Reliability comparison between SAC305 joint and sintered nanosilver joint at high temperatures for power electronic packaging. J. Mater. Process. Technol. 214(9), 1900–1908 (2014)

    Article  Google Scholar 

  69. P. Rajaguru, H. Lu, C. Bailey, Sintered silver finite element modelling and reliability based design optimisation in power electronic module. Microelectron. Reliab. 55(6), 919–930 (2015)

    Article  Google Scholar 

  70. F. Forest, A. Rashed, J.-J. Huselstein, T. Martiré, P. Enrici, Fast power cycling protocols implemented in an automated test bench dedicated to IGBT module ageing. Microelectron. Reliab. 55(1), 81–92 (2015)

    Article  Google Scholar 

  71. B. Nagl, J. Nicolics, W. Gschohsmann, Analysis of thermomechanically related failures of traction IGBT power modules at short circuit switching, in Electronic System-Integration Technology Conference (ESTC), 2010 3rd (2010), pp. 1–6

    Google Scholar 

  72. I. Paul, L. Beaurenaut, F. Sauerland, M. Stoilkova, Application based modified reliability tests and their physical correlation with lifetime assessment models. Paper presented at the PCIM Europe 2013, Nuremberg (2013)

    Google Scholar 

  73. H. Medjahed, P.-E. Vidal, B. Nogarede, Comparison between electromagnetic and thermal stress induced by direct current flow in IGBT bond wires, in 2012 7th International Conference on Integrated Power Electronics Systems (CIPS) (2012), pp. 1–6

    Google Scholar 

  74. Y. Chen, X. Wu, I. Fedchenia, M. Gorbounov, V. Blasko, W. Veronesi, C. Slade, A comprehensive analytical and experimental investigation of wire bond life for IGBT modules, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 2298–2304

    Google Scholar 

  75. H. Medjahed, P.-E. Vidal, B. Nogarede, Thermo-mechanical stress of bonded wires used in high power modules with alternating and direct current modes. Microelectron. Reliab. 52(6), 1099–1104 (2012)

    Article  Google Scholar 

  76. J. Bielen, J.-J. Gommans, F. Theunis, Prediction of high cycle fatigue in aluminium bond wires: a physics of failure approach combining experiments and multi-physics simulations, in 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006. EuroSime 2006 (2006), pp. 1–7

    Google Scholar 

  77. E. Özkol, S. Hartmann, G. Pâques, Improving the power cycling performance of the emitter contact of IGBT modules: implementation and evaluation of stitch bond layouts. Microelectron. Reliab. 54(12), 2796–2800 (2014)

    Article  Google Scholar 

  78. M. Musallam, C.M. Johnson, Real-time compact thermal models for health management of power electronics. IEEE Trans. Power Electron. 25(6), 1416–1425 (2010)

    Article  Google Scholar 

  79. F. Bayle, A. Mettas, Temperature acceleration models in reliability predictions: justification & improvements, in Reliability and Maintainability Symposium (RAMS), 2010 Proceedings—Annual (2010), pp. 1–6

    Google Scholar 

  80. L. Zhou, J. Wu, P. Sun, X. Du, Junction temperature management of IGBT module in power electronic converters. Microelectron. Reliab. 54(12), 2788–2795 (2014)

    Article  Google Scholar 

  81. J. Qin, J.B. Bernstein, Non-arrhenius temperature acceleration and stress-dependent voltage acceleration for semiconductor device involving multiple failure mechanisms. Integrated reliability workshop final report, 2006 IEEE international (2006), pp. 93–97

    Google Scholar 

  82. H. Wang, K. Ma, F. Blaabjerg, Design for reliability of power electronic systems, in IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 33–44

    Google Scholar 

  83. M. Arifujjaman, Reliability comparison of power electronic converters for grid-connected 1.5 kW wind energy conversion system. Renew. Energy 57, 348–357 (2013)

    Article  Google Scholar 

  84. A. Isidori, F.M. Rossi, F. Blaabjerg, Thermal loading and reliability of 10 MW multilevel wind power converter at different wind roughness classes, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 2172–2179

    Google Scholar 

  85. B.P. McGrath, D.G. Holmes, Multicarrier PWM strategies for multilevel inverters. IEEE Trans. Ind. Electron. 49(4), 858–867 (2002)

    Article  Google Scholar 

  86. H. Wang, R. Zhao, Y. Deng, X. He, Novel carrier-based PWM methods for multilevel inverter, in The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003. IECON’03, vol. 3 (2003), pp. 2777–2782

    Google Scholar 

  87. User manual of plecs blockset version 3.1, Mar 2011

    Google Scholar 

  88. T. Bruckner, D.G. Holmes, Optimal pulse-width modulation for three-level inverters. IEEE Trans. Power Electron. 20(1), 82–89 (2005)

    Article  Google Scholar 

  89. K. Xie, Z. Jiang, W. Li, Effect of wind speed on wind turbine power converter reliability. IEEE Trans. Energy Convers. 27(1), 96–104 (2012)

    Article  Google Scholar 

  90. D. Wagenitz, A. Westerholz, E. Erdmann, A. Hambrecht, S. Dieckerhoff, Power cycling test bench for IGBT power modules used in wind applications, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–10

    Google Scholar 

  91. M. Denk, M.-M. Bakran, M. Denk, M.-M. Bakran, Online junction temperature cycle recording of an IGBT power module in a hybrid car. Adv. Power Electron. 2015, e652389 (2015)

    Article  Google Scholar 

  92. M. Matsuishi, T. Endo, Fatigue of metals subjected to varying stress. Jpn. Soc. Mech. Eng. (1968)

    Google Scholar 

  93. M. Arifujjaman, M.T. Iqbal, J.E. Quaicoe, A comparative study of the reliability of the power electronics in grid connected small wind turbine systems, in Canadian Conference on Electrical and Computer Engineering, 2009. CCECE’09 (2009), pp. 394–397

    Google Scholar 

  94. E.E. Kostandyan, K. Ma, Reliability estimation with uncertainties consideration for high power IGBTs in 2.3 MW wind turbine converter system. Microelectron. Reliab. 52(9–10), 2403–2408 (2012)

    Article  Google Scholar 

  95. H.O. Madsen, S. Krenk, N.C. Lind, Methods of Structural Safety (Courier Corporation, New York, 2006)

    Google Scholar 

  96. E.E. Kostandyan, J.D. Sørensen, Reliability assessment of solder joints in power electronic modules by crack damage model for wind turbine applications. Energies 4(12), 2236–2248 (2011)

    Article  Google Scholar 

  97. Y. Wang, S. Jones, A. Dai, G. Liu, Reliability enhancement by integrated liquid cooling in power IGBT modules for hybrid and electric vehicles. Microelectron. Reliab. 54(9–10), 1911–1915 (2014)

    Article  Google Scholar 

  98. A. Watanabe, M. Tsukuda, I. Omura, Real time degradation monitoring system for high power IGBT module under power cycling test. Microelectron. Reliab. 53(9–11), 1692–1696 (2013)

    Article  Google Scholar 

  99. S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran, P. Tavner, Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans. Power Electron. 25(11), 2734–2752 (2010)

    Article  Google Scholar 

  100. Y. Song, B. Wang, Survey on reliability of power electronic systems. IEEE Trans. Power Electron. 28(1), 591–604 (2013)

    Article  Google Scholar 

  101. A. Alessandria, L. Fragapane, G. Morale, Design considerations on field-stop layer processing in a trench-gate IGBT, in 13th European Conference on Power Electronics and Applications, 2009. EPE’09 (2009), pp. 1–6

    Google Scholar 

  102. M. Zerarka, P. Austin, M. Bafleur, Comparative study of sensitive volume and triggering criteria of SEB in 600 V planar and trench IGBTs. Microelectron. Reliab. 51(9–11), 1990–1994 (2011)

    Article  Google Scholar 

  103. M. Riccio, L. Maresca, A. Irace, G. Breglio, Y. Iwahashi, Impact of gate drive voltage on avalanche robustness of trench IGBTs. Microelectron. Reliab. 54(9–10), 1828–1832 (2014)

    Article  Google Scholar 

  104. L.M. Selgi, L. Fragapane, Experimental evaluation of a 600 V super-junction planar PT IGBT prototype & comparison with planar PT and trench gate PT technologies, in 2013 15th European Conference on Power Electronics and Applications (EPE) (2013), pp. 1–7

    Google Scholar 

  105. M. Tanaka, I. Omura, Structure oriented compact model for advanced trench IGBTs without fitting parameters for extreme condition: Part I. Microelectron. Reliab. 51(9–11), 1933–1937 (2011)

    Article  Google Scholar 

  106. N. Luther-King, E.M.S. Narayanan, L. Coulbeck, A. Crane, R. Dudley, Comparison of trench gate IGBT and CIGBT devices for increasing the power density from high power modules. IEEE Trans. Power Electron. 25(3), 583–591 (2010)

    Article  Google Scholar 

  107. N. Luther-King, E.M.S. Narayanan, L. Coulbeck, A. Crane, R. Dudley, Comparison of trench gate IGBT and CIGBT devices for 3.3 kV high power module applications, in 2010 International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM) (2010), pp. 545–549

    Google Scholar 

  108. S. Azzopardi, Y. Belmehdi, F. Capy, J. Deletage, E. Woirgard, Evaluation of the performances of a novel punch through trench IGBT using a Si(1-x)Ge(x) N+; buffer layer by using finite elements simulations, in Power Electronics Conference (IPEC), 2010 International (2010), pp. 149–155

    Google Scholar 

  109. X. Kang, A. Caiafa, E. Santi, J.L. Hudgins, P.R. Palmer, Characterization and modeling of high-voltage field-stop IGBTs. IEEE Trans. Ind. Appl. 39(4), 922–928 (2003)

    Article  Google Scholar 

  110. A.J. Forsyth, S.Y. Yang, P.A. Mawby, P. Igic, Measurement and modelling of power electronic devices at cryogenic temperatures. Circuits Devices Syst. IEEE Proc. 153(5), 407–415 (2006)

    Article  Google Scholar 

  111. M. Bakran, H.-G. Eckel, M. Helsper, A. Nagel, Challenges in using the latest generation of IGBTs in traction converters. Paper presented at the EPE Journal (2005)

    Google Scholar 

  112. W. Choi, D. Son, M. Hallenberger, Driving and layout design for fast switching. Super-Junction MOSFETs, 26 Nov 2014

    Google Scholar 

  113. L. Dupont, Y. Avenas, P.-O. Jeannin, Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 49(4), 1599–1608 (2013)

    Article  Google Scholar 

  114. N. Patil, D. Das, M. Pecht, Anomaly detection for IGBTs using Mahalanobis distance. Microelectron. Reliab. 55(7), 1054–1059 (2015)

    Article  Google Scholar 

  115. M. Tounsi, A. Oukaour, B. Tala-Ighil, H. Gualous, B. Boudart, D. Aissani, Characterization of high-voltage IGBT module degradations under PWM power cycling test at high ambient temperature. Microelectron. Reliab. 50(9–11), 1810–1814 (2010)

    Article  Google Scholar 

  116. K.-H. Oh, J. Lee, K.-H. Lee, Y.C. Kim, C. Yun, A simulation study on novel field stop IGBTs using superjunction. IEEE Trans. Electron Devices 53(4), 884–890 (2006)

    Article  Google Scholar 

  117. M. Antoniou, F. Udrea, F. Bauer, A. Mihaila, I. Nistor, Towards achieving the soft-punch-through superjunction insulated-gate bipolar transistor breakdown capability. IEEE Electron Device Lett. 32(9), 1275–1277 (2011)

    Article  Google Scholar 

  118. W. Chen, Z. Li, Y. Liu, M. Ren, B. Zhang, Z. Li, A snapback suppressed reverse-conducting IGBT with built-in diode by utilizing edge termination. Superlattices Microstruct. 70, 109–116 (2014)

    Article  Google Scholar 

  119. R. Chibante, A. Araujo, A. Carvalho, A new physics based SPICE model for NPT IGBTs, in The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003. IECON’03, vol. 2 (2003), pp. 1156–1161

    Google Scholar 

  120. R. Chibante, A. Araujo, A. Carvalho, A FEM punch-through IGBT model using an efficient parameter extraction method, in 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005 (2005), p. 6

    Google Scholar 

  121. J. Takaishi, S. Harada, M. Tsukuda, I. Omura, Structure oriented compact model for advanced trench IGBTs without fitting parameters for extreme condition: Part II. Microelectron. Reliab. 54(9–10), 1891–1896 (2014)

    Article  Google Scholar 

  122. C. Ronsisvalle, H. Fischer, K.S. Park, C. Abbate, G. Busatto, A. Sanseverino, F. Velardi, High frequency capacitive behavior of field stop trench gate IGBTs operating in short circuit, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 183–188

    Google Scholar 

  123. Y. Tang, B. Wang, M. Chen, B. Liu, Simulation model and parameter extraction of field-stop (FS) IGBT. Microelectron. Reliab. 52(12), 2920–2931 (2012)

    Article  Google Scholar 

  124. P. Lefranc, D. Planson, H. Morel, D. Bergogne, Analysis of the dynamic avalanche of punch through insulated gate bipolar transistor (PT-IGBT). Solid-State Electron. 53(9), 944–954 (2009)

    Article  Google Scholar 

  125. L. Benbahouche, A. Merabet, A. Zegadi, An improved understanding of IGBT behavior under thermal stress, in 26th International Conference on Microelectronics, 2008. MIEL 2008 (2008), pp. 189–192

    Google Scholar 

  126. A. de Pádua Finazzi, G.B. de Lima, L.C. de Freitas, E.A.A. Coelho, V.J. Farias, L.C.G. Freitas, Proposal for preprogrammed control applied to a current-sensorless PFC boost converter. Microprocess. Microsyst. 38(5), 443–450 (2014)

    Article  Google Scholar 

  127. A. Khosroshahi, M. Abapour, M. Sabahi, Reliability evaluation of conventional and interleaved DC–DC boost converters. IEEE Trans. Power Electron. 30(10), 5821–5828 (2015)

    Article  Google Scholar 

  128. M. Imaizumi, N. Miura, Characteristics of 600, 1200, and 3300 V planar SiC-MOSFETs for energy conversion applications. IEEE Trans. Electron Devices 62(2), 390–395 (2015)

    Article  Google Scholar 

  129. M.-C. Lee, A.Q. Huang, An injection efficiency model to characterize the injection capability and turn-off speed for >10 kV 4H-SiC IGBTs. Solid-State Electron. 93, 27–39 (2014)

    Article  Google Scholar 

  130. I. Pesic, D. Navarro, M. Miyake, M. Miura-Mattausch, Degradation of 4H-SiC IGBT threshold characteristics due to SiC/SiO2 interface defects. Solid-State Electron. 101, 126–130 (2014)

    Article  Google Scholar 

  131. A. Anthon, Z. Zhang, M.A.E. Andersen, A high power boost converter for PV Systems operating up to 300 kHz using SiC devices, in Electronics and Application Conference and Exposition (PEAC), 2014 International (2014), pp. 302–307

    Google Scholar 

  132. K. Takao, H. Ohashi, Accurate power circuit loss estimation method for power converters with Si-IGBT and SiC-diode hybrid pair. IEEE Trans. Electron Devices 60(2), 606–612 (2013)

    Article  Google Scholar 

  133. X. Zhong, X. Wu, W. Zhou, K. Sheng, An All-SiC High-frequency boost DC–DC converter operating at 320 °C junction temperature. IEEE Trans. Power Electron. 29(10), 5091–5096 (2014)

    Article  Google Scholar 

  134. F. Blaabjerg, M. Liserre, K. Ma, Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48(2), 708–719 (2012)

    Article  Google Scholar 

  135. C. Ensslin, M. Durstewitz, B. Hahn, B. Lange, K. Rohrig, German Wind Energy Report. ISET (2005)

    Google Scholar 

  136. O.S. Senturk, L. Helle, S. Munk-Nielsen, P. Rodriguez, R. Teodorescu, Converter structure-based power loss and static thermal modeling of the press-pack IGBT three-level ANPC VSC applied to multi-MW wind turbines. IEEE Trans. Ind. Appl. 47(6), 2505–2515 (2011)

    Article  Google Scholar 

  137. F. Blaabjerg, K. Ma, D. Zhou, Power electronics and reliability in renewable energy systems, in 2012 IEEE International Symposium on Industrial Electronics (ISIE) (2012), pp. 19–30

    Google Scholar 

  138. J.-S. Lee, K.B. Lee, Variable DC-link voltage algorithm with a wide range of maximum power point tracking for a two-string PV system. Energies 6(1), 58–78 (2013)

    Article  Google Scholar 

  139. F. Gao, D. Li, P.C. Loh, Y. Tang, P. Wang, Indirect dc-link voltage control of two-stage single-phase PV inverter, in IEEE Energy Conversion Congress and Exposition, 2009. ECCE 2009 (2009), pp. 1166–1172

    Google Scholar 

  140. K. Han, G. Chen, A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform, in Power Electronics and Motion Control Conference, 2009. IPEMC’09. IEEE 6th International (2009), pp. 2255–2259

    Google Scholar 

  141. F.F.M. El-Sousy, M. Orabi, H. Godah, Maximum power point tracking control scheme for grid connected variable speed wind driven self-excited induction generator. J. Power Electron. 6(1), 52–66 (2006)

    Google Scholar 

  142. Y. Bekakra, D.B. Attous, DFIG sliding mode control fed by back-to-back PWM converter with DC-link voltage control for variable speed wind turbine. Front. Energy 8(3), 345–354 (2014)

    Article  Google Scholar 

  143. U. Dayaratne, S. Tennakoon, J.S. Knight, N. Shammas, Minimum DC link voltages for the generator bridge converter of a SCIG based variable speed wind turbine with fully rated converters. Paper presented at the International Conference on Renewable Energies and Power Quality (ICREPQ 11), Las Palmas de Gran Canaria (Spain, 2011), vol. n/a, p. online

    Google Scholar 

  144. U.I. Dayaratne, S.B. Tennakoon, N.Y.A. Shammas, J.S. Knight, Investigation of variable DC link voltage operation of a PMSG based wind turbine with fully rated converters at steady state, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–10

    Google Scholar 

  145. C.-Y. Yu, J. Tamura, R.D. Lorenz, Control method for calculating optimum DC bus voltage to improve drive system efficiency in variable DC bus drive systems, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 2992–2999

    Google Scholar 

  146. X. Pei, Y. Kang, J. Chen, Analysis and calculation of DC-link current and voltage ripple for three-phase inverter with unbalanced loads, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 1565–1572

    Google Scholar 

  147. J. Lemmens, J. Driesen, P. Vanassche, Dynamic DC-link voltage adaptation for thermal management of traction drives, in 2013 IEEE Energy Conversion Congress and Exposition (ECCE) (2013), pp. 180–187

    Google Scholar 

  148. J. Lemmens, J. Driesen, P. Vanassche, Thermal management in traction applications as a constraint optimal control problem, in 2012 IEEE Vehicle Power and Propulsion Conference (VPPC) (2012), pp. 36–41

    Google Scholar 

  149. M. Andresen, M. Liserre, Impact of active thermal management on power electronics design. Microelectron. Reliab. 54(9–10), 1935–1939 (2014)

    Article  Google Scholar 

  150. M. Honsberg, T. Radke, 3-level IGBT modules with trench gate IGBT and their thermal analysis in UPS, PFC and PV operation modes, in 13th European Conference on Power Electronics and Applications, 2009. EPE’09 (2009), pp. 1–7

    Google Scholar 

  151. K. Ma, M. Liserre, F. Blaabjerg, Reactive power influence on the thermal cycling of multi-MW wind power inverter, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 262–269

    Google Scholar 

  152. K. Ma, M. Liserre, F. Blaabjerg, Reactive power control methods for improved reliability of wind power inverters under wind speed variations, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 3105–3112

    Google Scholar 

  153. M.A. Elgendy, B. Zahawi, D.J. Atkinson, Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 3(1), 21–33 (2012)

    Article  Google Scholar 

  154. G.J. Kish, J.J. Lee, P.W. Lehn, Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking. IET Renew. Power Gener. 6(4), 259–266 (2012)

    Article  Google Scholar 

  155. F. Zhang, J. Maddy, G. Premier, A. Guwy, Novel current sensing photovoltaic maximum power point tracking based on sliding mode control strategy. Sol. Energy 118, 80–86 (2015)

    Article  Google Scholar 

  156. M.H. Moradi, A.R. Reisi, A hybrid maximum power point tracking method for photovoltaic systems. Sol. Energy 85(11), 2965–2976 (2011)

    Article  Google Scholar 

  157. J. Ahmad, A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays, in 2010 2nd International Conference on Software Technology and Engineering (ICSTE), vol. 1 (2010), pp. V1-247–V1-250

    Google Scholar 

  158. D.P. Quoc, Q.N. Nhat, L.M. Phuong, L.D. Khoa, N.T. D. Vu, A.N. Bao, H.H. Lee, The new combined maximum power point tracking algorithm using fractional estimation in photovoltaic systems, in 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS) (2011), pp. 919–923

    Google Scholar 

  159. E. Kabalci, Design and analysis of a hybrid renewable energy plant with solar and wind power. Energy Convers. Manag. 72, 51–59 (2013)

    Article  Google Scholar 

  160. W. Marańda, M. Piotrowicz, Efficiency of maximum power point tracking in photovoltaic system under variable solar irradiance. Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 713–721 (2014)

    Google Scholar 

  161. R. Haroun, A. El Aroudi, A. Cid-Pastor, G. Garica, C. Olalla, L. Martinez-Salamero, Impedance matching in photovoltaic systems using cascaded boost converters and sliding-mode control. IEEE Trans. Power Electron. 30(6), 3185–3199 (2015)

    Article  Google Scholar 

  162. Y. Liu, M. Li, X. Ji, X. Luo, M. Wang, Y. Zhang, A comparative study of the maximum power point tracking methods for PV systems. Energy Convers. Manag. 85, 809–816 (2014)

    Article  Google Scholar 

  163. I. Houssamo, F. Locment, M. Sechilariu, Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms. Renew. Energy 35(10), 2381–2387 (2010)

    Article  Google Scholar 

  164. M.A.G. de Brito, L.P. Sampaio, G. Luigi, G.A. e Melo, C.A. Canesin, comparative analysis of MPPT techniques for PV applications, in 2011 International Conference on Clean Electrical Power (ICCEP) (2011), pp. 99–104

    Google Scholar 

  165. I.V. Banu, R. Beniuga, M. Istrate, Comparative analysis of the perturb-and-observe and incremental conductance MPPT methods, in 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (2013), pp. 1–4

    Google Scholar 

  166. R.F. Coelho, F. Concer, D.C. Martins, A study of the basic DC-DC converters applied in maximum power point tracking, in Power Electronics Conference, 2009. COBEP’09. Brazilian (2009), pp. 673–678

    Google Scholar 

  167. A.M. Atallah, A.Y. Abdelaziz, R.S. Jumaah, Implementation of perturb and observe MPPT of PV system with direct control method using buck and buck-boost converters. Electron. Instrum. Eng. Int. J. EEIEJ 1(1) (2014)

    Google Scholar 

  168. G.M.S. Azevedo, M.C. Cavalcanti, K.C. Oliveira, F.A.S. Neves, Z.D. Lins, Comparative evaluation of maximum power point tracking methods for photovoltaic systems. J. Sol. Energy Eng. 131(3), 031006 (2009)

    Article  Google Scholar 

  169. K. Ishaque, Z. Salam, G. Lauss, The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl. Energy 119, 228–236 (2014)

    Article  Google Scholar 

  170. S.K. Dash, D. Verma, S. Nema, R.K. Nema, Comparative analysis of maximum power point (MPP) tracking techniques for solar PV application using MATLAB simulink. Recent Adv. Innov. Eng. (ICRAIE) 2014, 1–7 (2014)

    Google Scholar 

  171. B. Subudhi, R. Pradhan, A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy 4(1), 89–98 (2013)

    Article  Google Scholar 

  172. A. Mahdi, W. Tang, H. Wu, A. Mahdi, Improvement of a MPPT algorithm for PV systems and its experimental validation. Paper presented at the 10th International Conference on Renewable Energies and Power Quality (Granada, Spain, 2010), pp. 1–6

    Google Scholar 

  173. A.M. Noman, K.E. Addoweesh, H.M. Mashaly, DSPACE real-time implementation of MPPT-based FLC method. Int. J. Photoenergy 2013, e549273 (2013)

    Article  Google Scholar 

  174. A.M. Noman, K.E. Addoweesh, H.M. Mashaly, Simulation and dSPACE hardware implementation of the MPPT techniques using buck boost converter, in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE) (2014), pp. 1–8

    Google Scholar 

  175. A. Mondal, S. Yuvarajan, MPPT scheme for small scale photovoltaic systems using dSPACE, in 2012 IEEE Green Technologies Conference (2012), pp. 1–3

    Google Scholar 

  176. G. Graditi, G. Adinolfi, G.M. Tina, Photovoltaic optimizer boost converters: temperature influence and electro-thermal design. Appl. Energy 115, 140–150 (2014)

    Article  Google Scholar 

  177. G. Aurilio, M. Balato, G. Graditi, C. Landi, M. Luiso, M. Vitelli, Fast hybrid MPPT technique for photovoltaic applications: numerical and experimental validation. Adv. Power Electron. 2014, e125918 (2014)

    Article  Google Scholar 

  178. Y. Yang, H. Wang, F. Blaabjerg, T. Kerekes, A hybrid power control concept for PV inverters with reduced thermal loading. IEEE Trans. Power Electron. 29(12), 6271–6275 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alhussein Albarbar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Albarbar, A., Batunlu, C. (2018). Thermal Analysis of Power Electronics: Review. In: Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-59828-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59828-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59827-7

  • Online ISBN: 978-3-319-59828-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics