Thermal Analysis of Power Electronics: Review

  • Alhussein AlbarbarEmail author
  • Canras Batunlu


This chapter reviews recent work done on thermal characteristics of power electronic converters and their electronic components. The review process is divided into electrothermal, thermomechanical modeling, lifetime analysis of semiconductor switching elements, and materials properties effects on the reliability of power electronic converters in wind and solar energy applications. Achievements, shortfalls, and remaining tasks for future investigations are also outlined throughout the chapter.


Power electronic converters Wind turbines Photovoltaic solar systems Failure modes Reliability of power systems 


  1. 1.
    R.M. Foster, A reactance theorem. Bell Syst. Tech. J. 3(2), 259–267 (1924)CrossRefGoogle Scholar
  2. 2.
    W. Cauer, Die Verwirklichung der Wechselstromwiderstände vorgeschriebener Frequenzabhängigkeit. Arch. Elktrotech. 17, 355–388 (1926)CrossRefGoogle Scholar
  3. 3.
    R.M. Foster, Academic and theoretical aspects of circuit theory. Proc. IRE 5, 866–871 (1962)MathSciNetCrossRefGoogle Scholar
  4. 4.
    B. Du, J.L. Hudgins, E. Santi, A.T. Bryant, P.R. Palmer, H.A. Mantooth, Transient electrothermal simulation of power semiconductor devices. IEEE Trans. Power Electron. 25(1), 237–248 (2010)CrossRefGoogle Scholar
  5. 5.
    J.R. Culham, M.M. Yovanovich, T.F. Lemczyk, Thermal characterization of electronic packages using a three-dimensional Fourier series solution. J. Electron. Packag. 122(3), 233–239 (2000)CrossRefGoogle Scholar
  6. 6.
    P. Widas, Introduction to finite element analysis (1997),
  7. 7.
    J.J. Barnes, R.J. Lomax, Finite-element methods in semiconductor device simulation. IEEE Trans. Electron Devices 24(8), 1082–1089 (1977)CrossRefGoogle Scholar
  8. 8.
    J.T. Hsu, L. Vu-Quoc, A rational formulation of thermal circuit models for electrothermal simulation. I. Finite element method [power electronic systems]. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 43(9), 721–732 (1996)CrossRefGoogle Scholar
  9. 9.
    A.R. Hefner, D.L. Blackburn, Simulating the dynamic electrothermal behavior of power electronic circuits and systems. IEEE Trans. Power Electron. 8(4), 376–385 (1993)CrossRefGoogle Scholar
  10. 10.
    V. Székely, THERMODEL: a tool for compact dynamic thermal model generation. Microelectron. J. 29(4–5), 257–267 (1998)CrossRefGoogle Scholar
  11. 11.
    P.E. Bagnoli, C.E. Casarosa, M. Ciampi, E. Dallago, Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory. IEEE Trans. Power Electron. 13(6), 1208–1219 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Rencz, V. Szekely, A. Poppe, B. Courtois, Inclusion of RC compact models of packages into board level thermal simulation tools, in Semiconductor Thermal Measurement and Management, 2002. Eighteenth Annual IEEE Symposium (2002), pp. 71–76Google Scholar
  13. 13.
    M. Ciappa, W. Fichtner, T. Kojima, Y. Yamada, Y. Nishibe, Extraction of accurate thermal compact models for fast electro-thermal simulation of IGBT modules in hybrid electric vehicles. Microelectron. Reliab. 45(9–11), 1694–1699 (2005)CrossRefGoogle Scholar
  14. 14.
    F. Christiaens, B. Vandevelde, E. Beyne, R. Mertens, J. Berghmans, A generic methodology for deriving compact dynamic thermal models, applied to the PSGA package. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 21(4), 565–576 (1998)CrossRefGoogle Scholar
  15. 15.
    F.N. Masana, A closed form solution of junction to substrate thermal resistance in semiconductor chips. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 19(4), 539–545 (1996)CrossRefGoogle Scholar
  16. 16.
    F.N. Masana, A new approach to the dynamic thermal modelling of semiconductor packages. Microelectron. Reliab. 41(6), 901–912 (2001)CrossRefGoogle Scholar
  17. 17.
    T. Poller, S. D’Arco, M. Hernes, J. Lutz, Influence of thermal cross-couplings on power cycling lifetime of IGBT power modules, in 2012 7th International Conference on Integrated Power Electronics Systems (CIPS) (2012), pp. 1–6Google Scholar
  18. 18.
    M. Janicki, G. De Mey, A. Napieralski, Transient thermal analysis of multilayered structures using Green’s functions. Microelectron. Reliab. 42(7), 1059–1064 (2002)CrossRefGoogle Scholar
  19. 19.
    B. Vermeersch, G. De Mey, A fixed-angle heat spreading model for dynamic thermal characterization of rear-cooled substrates, in Twenty Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007 (2007), pp. 95–101Google Scholar
  20. 20.
    I. Swan, A. Bryant, P. Mawby, Fast thermal models for power device packaging, in IEEE Industry Applications Society Annual Meeting, 2008. IAS’08 (2008), pp. 1–8Google Scholar
  21. 21.
    A. Augustin, T. Hauck, A new approach to boundary condition independent compact dynamic thermal models, in Twenty Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007 (2007), pp. 228–232Google Scholar
  22. 22.
    A.M. Darwish, A. Bayba, FET Gate Length Impact on Reliability (2007), pp. 311–314Google Scholar
  23. 23.
    W. Kiffe, G. Wachutka, Combination of thermal subsystems modelled by rapid circuit transformation. EDA Publ. Assoc. (2007)Google Scholar
  24. 24.
    A. Castellazzi, M. Johnson, M. Piton, M. Mermet-Guyennet, Experimental analysis and modeling of multi-chip IGBT modules short-circuit behavior, in Power Electronics and Motion Control Conference, 2009. IPEMC’09. IEEE 6th International (2009), pp. 285–290Google Scholar
  25. 25.
    D. Schweitzer, H. Pape, L. Chen, Transient measurement of the junction-to-case thermal resistance using structure functions: chances and limits, in Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2008. Semi-Therm 2008 (2008), pp. 191–197Google Scholar
  26. 26.
    R. Hocine, S.H. Pulko, A.B. Stambouli, A. Saidane, TLM method for thermal investigation of IGBT modules in PWM mode. Microelectron. Eng. 86(10), 2053–2062 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Stupar, D. Bortis, U. Drofenik, J.W. Kolar, Advanced setup for thermal cycling of power modules following definable junction temperature profiles, in Power Electronics Conference (IPEC), 2010 International (2010), pp. 962–969Google Scholar
  28. 28.
    A. Hensler, C. Herold, J. Lutz, M. Thoben, Thermal impedance monitoring during power cycling tests. Paper presented at the PCIM Europe, Berlin (2011), pp. 241–246Google Scholar
  29. 29.
    T. Gradinger, G. Riedel, Thermal networks for time-variant cooling systems: modeling approach and accuracy requirements for lifetime prediction, in 2012 7th International Conference on Integrated Power Electronics Systems (CIPS) (2012), pp. 1–6Google Scholar
  30. 30.
    R. Skuriat, C.M. Johnson, Thermal performance of baseplate and direct substrate cooled power modules, in 4th IET Conference on Power Electronics, Machines and Drives, 2008. PEMD 2008 (2008), pp. 548–552Google Scholar
  31. 31.
    C. Bernal, P.M. Gaudo, A. Gallego, A. Otin, J.-M. Burdio, Half-bridge resonant inverter for domestic induction heating based on silicon carbide technology, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 2218–2222Google Scholar
  32. 32.
    T. Azoui, P. Tounsi, J.-M. Dorkel, Innovative methodology to extract dynamic compact thermal models: application to power devices, in 2010 16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC) (2010), pp. 1–5Google Scholar
  33. 33.
    D. Schweitzer, The junction-to-case thermal resistance: a boundary condition dependent thermal metric, in 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2010. SEMI-THERM 2010 (2010), pp. 151–156Google Scholar
  34. 34.
    Z. Luo, H. Ahn, M.A.E. Nokali, A thermal model for insulated gate bipolar transistor module. IEEE Trans. Power Electron. 19(4), 902–907 (2004)CrossRefGoogle Scholar
  35. 35.
    Y. Yu, T.-Y.T. Lee, V.A. Chiriac, Compact thermal resistor-capacitor-network approach to predicting transient junction temperatures of a power amplifier module. IEEE Trans. Compon. Packag. Manuf. Technol. 2(7), 1172–1181 (2012)CrossRefGoogle Scholar
  36. 36.
    U. Drofenik, J.W. Kolar, A thermal model of a forced-cooled heat sink for transient temperature calculations employing a circuit simulator. IEEJ Trans. Ind. Appl. 126(7), 841–851 (2006)CrossRefGoogle Scholar
  37. 37.
    U. Drofenik, D. Cottet, A. Müsing, J. Meyer, J.W. Kolar, Modelling the thermal coupling between internal power semiconductor dies of a water-cooled 3300 V/1200 A HiPak IGBT module, in PCIM Eur. -CD-ROM Ed., no. 83 (2007)Google Scholar
  38. 38.
    D. Zhou, F. Blaabjerg, M. Lau, M. Tonnes, Thermal cycling overview of multi-megawatt two-level wind power converter at full grid code operation. IEEJ J. Ind. Appl. 2(4), 173–182 (2013)Google Scholar
  39. 39.
    A. Blinov, D. Vinnikov, T. Jalakas, Loss calculation methods of half-bridge square-wave inverters. Electron. Electr. Eng. 113(7) (2011)Google Scholar
  40. 40.
    W. Rui, W. Jialiang, H. Jian, C. Zhongyuan, W. Quanqing, J. Na, W. Chenghao, A power loss calculation method of IGBT three-phase SPWM converter, in 2012 Second International Conference on Intelligent System Design and Engineering Application (ISDEA) (2012), pp. 1180–1183Google Scholar
  41. 41.
    V. Ivakhno, V.V. Zamaruiev, O. Ilina, Estimation of semiconductor switching losses under hard switching using Matlab/Simulink subsystem. Electr. Control Commun. Eng. 2(1), 20–26 (2013)Google Scholar
  42. 42.
    C. Santos, F. Antunes, Losses Comparison Among Carrier-Based PWM Modulation Strategies in Three-Level Neutral-Point-Clamped Inverter (Spain, 2011)Google Scholar
  43. 43.
    G. Orfanoudakis, S.M. Sharkh, M. Yuratich, M. Abusara, Loss comparison of two and three-level inverter topologies, in 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010) (2010), pp. 1–6Google Scholar
  44. 44.
    A. Radan, Improved Design of Three-Level NPC Inverters in Comparison to Two-Level Inverters (2009)Google Scholar
  45. 45.
    I. Colak, E. Kabalci, R. Bayindir, Review of multilevel voltage source inverter topologies and control schemes. Energy Convers. Manag. 52(2), 1114–1128 (2011)CrossRefGoogle Scholar
  46. 46.
    Z. Zhou, M.S. Kanniche, S.G. Butcup, P. Igic, High-speed electro-thermal simulation model of inverter power modules for hybrid vehicles. IET Electr. Power Appl. 5(8), 636–643 (2011)CrossRefGoogle Scholar
  47. 47.
    H. Huang, A.T. Bryant, P.A. Mawby, Electro-thermal modelling of three phase inverter, in Proceedings of the 2011—14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–7Google Scholar
  48. 48.
    K. Ma, F. Blaabjerg, The impact of power switching devices on the thermal performance of a 10 MW wind power NPC converter. Energies 5(7), 2559–2577 (2012)CrossRefGoogle Scholar
  49. 49.
    K. Ma, F. Blaabjerg, M. Liserre, Thermal analysis of multilevel grid side converters for 10 MW wind turbines under low voltage ride through, in 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 2117–2124Google Scholar
  50. 50.
    D. Zhou, F. Blaabjerg, M. Lau, M. Tonnes, Thermal analysis of multi-MW two-level wind power converter, in IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 5858–5864Google Scholar
  51. 51.
    R. Pittini, S. D’Arco, M. Hernes, A. Petterteig, Thermal stress analysis of IGBT modules in VSCs for PMSG in large offshore wind energy conversion systems, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–10Google Scholar
  52. 52.
    K. Ma, F. Blaabjerg, Reliability-cost models for the power switching devices of wind power converters, in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (2012), pp. 820–827Google Scholar
  53. 53.
    D. Wigger, H.-G. Eckel, Comparison of chip- and module-measurements with high power IGBTs and RC-IGBTs, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–8Google Scholar
  54. 54.
    K. Ma, A.S. Bahman, S. Beczkowski, F. Blaabjerg, Complete loss and thermal model of power semiconductors including device rating information. IEEE Trans. Power Electron. 30(5), 2556–2569 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Mi, Y.-F. Li, Y.-J. Yang, W. Peng, H.-Z. Huang, Thermal cycling life prediction of Sn-3.0Ag-0.5Cu solder joint using type-I censored data. Sci. World J. 2014, 807693 (2014)CrossRefGoogle Scholar
  56. 56.
    L. Feller, S. Hartmann, D. Schneider, Lifetime analysis of solder joints in high power IGBT modules for increasing the reliability for operation at 150 °C. Microelectron. Reliab. 48(8–9), 1161–1166 (2008)CrossRefGoogle Scholar
  57. 57.
    B. Ji, X. Song, E. Sciberras, W. Cao, Y. Hu, V. Pickert, Multiobjective design optimization of IGBT power modules considering power cycling and thermal cycling. IEEE Trans. Power Electron. 30(5), 2493–2504 (2015)CrossRefGoogle Scholar
  58. 58.
    M. Bouarroudj, Z. Khatir, J.P. Ousten, L. Dupont, S. Lefebvre, F. Badel, Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules, in 2007 European Conference on Power Electronics and Applications (2007), pp. 1–10Google Scholar
  59. 59.
    H. Ye, M. Lin, C. Basaran, Failure modes and FEM analysis of power electronic packaging. Finite Elem. Anal. Des. 38(7), 601–612 (2002)CrossRefzbMATHGoogle Scholar
  60. 60.
    L. Anand, Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. J. Eng. Mater. Technol. 104(1), 12–17 (1982)CrossRefGoogle Scholar
  61. 61.
    G.Z. Wang, Z.N. Cheng, K. Becker, J. Wilde, Applying Anand model to represent the viscoplastic deformation behavior of solder alloys. J. Electron. Packag. 123(3), 247–253 (1998)CrossRefGoogle Scholar
  62. 62.
    M. Motalab, M. Mustafa, J.C. Suhling, J. Zhang, J. Evans, M.J. Bozack, P. Lall, Correlation of reliability models including aging effects with thermal cycling reliability data, in Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd (2013), pp. 986–1004Google Scholar
  63. 63.
    Y. Zhou, L. Xu, S. Liu, Optimization for warpage and residual stress due to reflow process in IGBT modules based on pre-warped substrate. Microelectron. Eng. 136, 63–70 (2015)CrossRefGoogle Scholar
  64. 64.
    G. Deboy, H. Hulsken, H. Mitlehner, R. Rupp, A comparison of modern power device concepts for high voltage applications: field stop-IGBT, compensation devices and SiC devices, in Bipolar/BiCMOS Circuits and Technology Meeting, 2000. Proceedings of the 2000 (2000), pp. 134–141Google Scholar
  65. 65.
    L. Xu, Y. Liu, S. Liu, Modeling and simulation of power electronic modules with microchannel coolers for thermo-mechanical performance. Microelectron. Reliab. 54(12), 2824–2835 (2014)CrossRefGoogle Scholar
  66. 66.
    R. Dudek, R. Doring, P. Sommer, B. Seiler, K. Kreyssig, H. Walter, M. Becker, M. Gunther, Combined experimental- and FE-studies on sinter-Ag behaviour and effects on IGBT-module reliability, in 2014 15th International Conference on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems (Eurosime) (2014), pp. 1–9Google Scholar
  67. 67.
    L. Braunwarth, S. Amrhein, T. Schreck, M. Kaloudis, Ecological comparison of soldering and sintering as die-attach technologies in power electronics. J. Clean. Prod. 102, 408–417 (2015)CrossRefGoogle Scholar
  68. 68.
    G. Chen, L. Yu, Y.-H. Mei, X. Li, X. Chen, G.-Q. Lu, Reliability comparison between SAC305 joint and sintered nanosilver joint at high temperatures for power electronic packaging. J. Mater. Process. Technol. 214(9), 1900–1908 (2014)CrossRefGoogle Scholar
  69. 69.
    P. Rajaguru, H. Lu, C. Bailey, Sintered silver finite element modelling and reliability based design optimisation in power electronic module. Microelectron. Reliab. 55(6), 919–930 (2015)CrossRefGoogle Scholar
  70. 70.
    F. Forest, A. Rashed, J.-J. Huselstein, T. Martiré, P. Enrici, Fast power cycling protocols implemented in an automated test bench dedicated to IGBT module ageing. Microelectron. Reliab. 55(1), 81–92 (2015)CrossRefGoogle Scholar
  71. 71.
    B. Nagl, J. Nicolics, W. Gschohsmann, Analysis of thermomechanically related failures of traction IGBT power modules at short circuit switching, in Electronic System-Integration Technology Conference (ESTC), 2010 3rd (2010), pp. 1–6Google Scholar
  72. 72.
    I. Paul, L. Beaurenaut, F. Sauerland, M. Stoilkova, Application based modified reliability tests and their physical correlation with lifetime assessment models. Paper presented at the PCIM Europe 2013, Nuremberg (2013)Google Scholar
  73. 73.
    H. Medjahed, P.-E. Vidal, B. Nogarede, Comparison between electromagnetic and thermal stress induced by direct current flow in IGBT bond wires, in 2012 7th International Conference on Integrated Power Electronics Systems (CIPS) (2012), pp. 1–6Google Scholar
  74. 74.
    Y. Chen, X. Wu, I. Fedchenia, M. Gorbounov, V. Blasko, W. Veronesi, C. Slade, A comprehensive analytical and experimental investigation of wire bond life for IGBT modules, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 2298–2304Google Scholar
  75. 75.
    H. Medjahed, P.-E. Vidal, B. Nogarede, Thermo-mechanical stress of bonded wires used in high power modules with alternating and direct current modes. Microelectron. Reliab. 52(6), 1099–1104 (2012)CrossRefGoogle Scholar
  76. 76.
    J. Bielen, J.-J. Gommans, F. Theunis, Prediction of high cycle fatigue in aluminium bond wires: a physics of failure approach combining experiments and multi-physics simulations, in 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006. EuroSime 2006 (2006), pp. 1–7Google Scholar
  77. 77.
    E. Özkol, S. Hartmann, G. Pâques, Improving the power cycling performance of the emitter contact of IGBT modules: implementation and evaluation of stitch bond layouts. Microelectron. Reliab. 54(12), 2796–2800 (2014)CrossRefGoogle Scholar
  78. 78.
    M. Musallam, C.M. Johnson, Real-time compact thermal models for health management of power electronics. IEEE Trans. Power Electron. 25(6), 1416–1425 (2010)CrossRefGoogle Scholar
  79. 79.
    F. Bayle, A. Mettas, Temperature acceleration models in reliability predictions: justification & improvements, in Reliability and Maintainability Symposium (RAMS), 2010 Proceedings—Annual (2010), pp. 1–6Google Scholar
  80. 80.
    L. Zhou, J. Wu, P. Sun, X. Du, Junction temperature management of IGBT module in power electronic converters. Microelectron. Reliab. 54(12), 2788–2795 (2014)CrossRefGoogle Scholar
  81. 81.
    J. Qin, J.B. Bernstein, Non-arrhenius temperature acceleration and stress-dependent voltage acceleration for semiconductor device involving multiple failure mechanisms. Integrated reliability workshop final report, 2006 IEEE international (2006), pp. 93–97Google Scholar
  82. 82.
    H. Wang, K. Ma, F. Blaabjerg, Design for reliability of power electronic systems, in IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 33–44Google Scholar
  83. 83.
    M. Arifujjaman, Reliability comparison of power electronic converters for grid-connected 1.5 kW wind energy conversion system. Renew. Energy 57, 348–357 (2013)CrossRefGoogle Scholar
  84. 84.
    A. Isidori, F.M. Rossi, F. Blaabjerg, Thermal loading and reliability of 10 MW multilevel wind power converter at different wind roughness classes, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 2172–2179Google Scholar
  85. 85.
    B.P. McGrath, D.G. Holmes, Multicarrier PWM strategies for multilevel inverters. IEEE Trans. Ind. Electron. 49(4), 858–867 (2002)CrossRefGoogle Scholar
  86. 86.
    H. Wang, R. Zhao, Y. Deng, X. He, Novel carrier-based PWM methods for multilevel inverter, in The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003. IECON’03, vol. 3 (2003), pp. 2777–2782Google Scholar
  87. 87.
    User manual of plecs blockset version 3.1, Mar 2011Google Scholar
  88. 88.
    T. Bruckner, D.G. Holmes, Optimal pulse-width modulation for three-level inverters. IEEE Trans. Power Electron. 20(1), 82–89 (2005)CrossRefGoogle Scholar
  89. 89.
    K. Xie, Z. Jiang, W. Li, Effect of wind speed on wind turbine power converter reliability. IEEE Trans. Energy Convers. 27(1), 96–104 (2012)CrossRefGoogle Scholar
  90. 90.
    D. Wagenitz, A. Westerholz, E. Erdmann, A. Hambrecht, S. Dieckerhoff, Power cycling test bench for IGBT power modules used in wind applications, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–10Google Scholar
  91. 91.
    M. Denk, M.-M. Bakran, M. Denk, M.-M. Bakran, Online junction temperature cycle recording of an IGBT power module in a hybrid car. Adv. Power Electron. 2015, e652389 (2015)CrossRefGoogle Scholar
  92. 92.
    M. Matsuishi, T. Endo, Fatigue of metals subjected to varying stress. Jpn. Soc. Mech. Eng. (1968)Google Scholar
  93. 93.
    M. Arifujjaman, M.T. Iqbal, J.E. Quaicoe, A comparative study of the reliability of the power electronics in grid connected small wind turbine systems, in Canadian Conference on Electrical and Computer Engineering, 2009. CCECE’09 (2009), pp. 394–397Google Scholar
  94. 94.
    E.E. Kostandyan, K. Ma, Reliability estimation with uncertainties consideration for high power IGBTs in 2.3 MW wind turbine converter system. Microelectron. Reliab. 52(9–10), 2403–2408 (2012)CrossRefGoogle Scholar
  95. 95.
    H.O. Madsen, S. Krenk, N.C. Lind, Methods of Structural Safety (Courier Corporation, New York, 2006)Google Scholar
  96. 96.
    E.E. Kostandyan, J.D. Sørensen, Reliability assessment of solder joints in power electronic modules by crack damage model for wind turbine applications. Energies 4(12), 2236–2248 (2011)CrossRefGoogle Scholar
  97. 97.
    Y. Wang, S. Jones, A. Dai, G. Liu, Reliability enhancement by integrated liquid cooling in power IGBT modules for hybrid and electric vehicles. Microelectron. Reliab. 54(9–10), 1911–1915 (2014)CrossRefGoogle Scholar
  98. 98.
    A. Watanabe, M. Tsukuda, I. Omura, Real time degradation monitoring system for high power IGBT module under power cycling test. Microelectron. Reliab. 53(9–11), 1692–1696 (2013)CrossRefGoogle Scholar
  99. 99.
    S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran, P. Tavner, Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans. Power Electron. 25(11), 2734–2752 (2010)CrossRefGoogle Scholar
  100. 100.
    Y. Song, B. Wang, Survey on reliability of power electronic systems. IEEE Trans. Power Electron. 28(1), 591–604 (2013)CrossRefGoogle Scholar
  101. 101.
    A. Alessandria, L. Fragapane, G. Morale, Design considerations on field-stop layer processing in a trench-gate IGBT, in 13th European Conference on Power Electronics and Applications, 2009. EPE’09 (2009), pp. 1–6Google Scholar
  102. 102.
    M. Zerarka, P. Austin, M. Bafleur, Comparative study of sensitive volume and triggering criteria of SEB in 600 V planar and trench IGBTs. Microelectron. Reliab. 51(9–11), 1990–1994 (2011)CrossRefGoogle Scholar
  103. 103.
    M. Riccio, L. Maresca, A. Irace, G. Breglio, Y. Iwahashi, Impact of gate drive voltage on avalanche robustness of trench IGBTs. Microelectron. Reliab. 54(9–10), 1828–1832 (2014)CrossRefGoogle Scholar
  104. 104.
    L.M. Selgi, L. Fragapane, Experimental evaluation of a 600 V super-junction planar PT IGBT prototype & comparison with planar PT and trench gate PT technologies, in 2013 15th European Conference on Power Electronics and Applications (EPE) (2013), pp. 1–7Google Scholar
  105. 105.
    M. Tanaka, I. Omura, Structure oriented compact model for advanced trench IGBTs without fitting parameters for extreme condition: Part I. Microelectron. Reliab. 51(9–11), 1933–1937 (2011)CrossRefGoogle Scholar
  106. 106.
    N. Luther-King, E.M.S. Narayanan, L. Coulbeck, A. Crane, R. Dudley, Comparison of trench gate IGBT and CIGBT devices for increasing the power density from high power modules. IEEE Trans. Power Electron. 25(3), 583–591 (2010)CrossRefGoogle Scholar
  107. 107.
    N. Luther-King, E.M.S. Narayanan, L. Coulbeck, A. Crane, R. Dudley, Comparison of trench gate IGBT and CIGBT devices for 3.3 kV high power module applications, in 2010 International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM) (2010), pp. 545–549Google Scholar
  108. 108.
    S. Azzopardi, Y. Belmehdi, F. Capy, J. Deletage, E. Woirgard, Evaluation of the performances of a novel punch through trench IGBT using a Si(1-x)Ge(x) N+; buffer layer by using finite elements simulations, in Power Electronics Conference (IPEC), 2010 International (2010), pp. 149–155Google Scholar
  109. 109.
    X. Kang, A. Caiafa, E. Santi, J.L. Hudgins, P.R. Palmer, Characterization and modeling of high-voltage field-stop IGBTs. IEEE Trans. Ind. Appl. 39(4), 922–928 (2003)CrossRefGoogle Scholar
  110. 110.
    A.J. Forsyth, S.Y. Yang, P.A. Mawby, P. Igic, Measurement and modelling of power electronic devices at cryogenic temperatures. Circuits Devices Syst. IEEE Proc. 153(5), 407–415 (2006)CrossRefGoogle Scholar
  111. 111.
    M. Bakran, H.-G. Eckel, M. Helsper, A. Nagel, Challenges in using the latest generation of IGBTs in traction converters. Paper presented at the EPE Journal (2005)Google Scholar
  112. 112.
    W. Choi, D. Son, M. Hallenberger, Driving and layout design for fast switching. Super-Junction MOSFETs, 26 Nov 2014Google Scholar
  113. 113.
    L. Dupont, Y. Avenas, P.-O. Jeannin, Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 49(4), 1599–1608 (2013)CrossRefGoogle Scholar
  114. 114.
    N. Patil, D. Das, M. Pecht, Anomaly detection for IGBTs using Mahalanobis distance. Microelectron. Reliab. 55(7), 1054–1059 (2015)CrossRefGoogle Scholar
  115. 115.
    M. Tounsi, A. Oukaour, B. Tala-Ighil, H. Gualous, B. Boudart, D. Aissani, Characterization of high-voltage IGBT module degradations under PWM power cycling test at high ambient temperature. Microelectron. Reliab. 50(9–11), 1810–1814 (2010)CrossRefGoogle Scholar
  116. 116.
    K.-H. Oh, J. Lee, K.-H. Lee, Y.C. Kim, C. Yun, A simulation study on novel field stop IGBTs using superjunction. IEEE Trans. Electron Devices 53(4), 884–890 (2006)CrossRefGoogle Scholar
  117. 117.
    M. Antoniou, F. Udrea, F. Bauer, A. Mihaila, I. Nistor, Towards achieving the soft-punch-through superjunction insulated-gate bipolar transistor breakdown capability. IEEE Electron Device Lett. 32(9), 1275–1277 (2011)CrossRefGoogle Scholar
  118. 118.
    W. Chen, Z. Li, Y. Liu, M. Ren, B. Zhang, Z. Li, A snapback suppressed reverse-conducting IGBT with built-in diode by utilizing edge termination. Superlattices Microstruct. 70, 109–116 (2014)CrossRefGoogle Scholar
  119. 119.
    R. Chibante, A. Araujo, A. Carvalho, A new physics based SPICE model for NPT IGBTs, in The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003. IECON’03, vol. 2 (2003), pp. 1156–1161Google Scholar
  120. 120.
    R. Chibante, A. Araujo, A. Carvalho, A FEM punch-through IGBT model using an efficient parameter extraction method, in 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005 (2005), p. 6Google Scholar
  121. 121.
    J. Takaishi, S. Harada, M. Tsukuda, I. Omura, Structure oriented compact model for advanced trench IGBTs without fitting parameters for extreme condition: Part II. Microelectron. Reliab. 54(9–10), 1891–1896 (2014)CrossRefGoogle Scholar
  122. 122.
    C. Ronsisvalle, H. Fischer, K.S. Park, C. Abbate, G. Busatto, A. Sanseverino, F. Velardi, High frequency capacitive behavior of field stop trench gate IGBTs operating in short circuit, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 183–188Google Scholar
  123. 123.
    Y. Tang, B. Wang, M. Chen, B. Liu, Simulation model and parameter extraction of field-stop (FS) IGBT. Microelectron. Reliab. 52(12), 2920–2931 (2012)CrossRefGoogle Scholar
  124. 124.
    P. Lefranc, D. Planson, H. Morel, D. Bergogne, Analysis of the dynamic avalanche of punch through insulated gate bipolar transistor (PT-IGBT). Solid-State Electron. 53(9), 944–954 (2009)CrossRefGoogle Scholar
  125. 125.
    L. Benbahouche, A. Merabet, A. Zegadi, An improved understanding of IGBT behavior under thermal stress, in 26th International Conference on Microelectronics, 2008. MIEL 2008 (2008), pp. 189–192Google Scholar
  126. 126.
    A. de Pádua Finazzi, G.B. de Lima, L.C. de Freitas, E.A.A. Coelho, V.J. Farias, L.C.G. Freitas, Proposal for preprogrammed control applied to a current-sensorless PFC boost converter. Microprocess. Microsyst. 38(5), 443–450 (2014)CrossRefGoogle Scholar
  127. 127.
    A. Khosroshahi, M. Abapour, M. Sabahi, Reliability evaluation of conventional and interleaved DC–DC boost converters. IEEE Trans. Power Electron. 30(10), 5821–5828 (2015)CrossRefGoogle Scholar
  128. 128.
    M. Imaizumi, N. Miura, Characteristics of 600, 1200, and 3300 V planar SiC-MOSFETs for energy conversion applications. IEEE Trans. Electron Devices 62(2), 390–395 (2015)CrossRefGoogle Scholar
  129. 129.
    M.-C. Lee, A.Q. Huang, An injection efficiency model to characterize the injection capability and turn-off speed for >10 kV 4H-SiC IGBTs. Solid-State Electron. 93, 27–39 (2014)CrossRefGoogle Scholar
  130. 130.
    I. Pesic, D. Navarro, M. Miyake, M. Miura-Mattausch, Degradation of 4H-SiC IGBT threshold characteristics due to SiC/SiO2 interface defects. Solid-State Electron. 101, 126–130 (2014)CrossRefGoogle Scholar
  131. 131.
    A. Anthon, Z. Zhang, M.A.E. Andersen, A high power boost converter for PV Systems operating up to 300 kHz using SiC devices, in Electronics and Application Conference and Exposition (PEAC), 2014 International (2014), pp. 302–307Google Scholar
  132. 132.
    K. Takao, H. Ohashi, Accurate power circuit loss estimation method for power converters with Si-IGBT and SiC-diode hybrid pair. IEEE Trans. Electron Devices 60(2), 606–612 (2013)CrossRefGoogle Scholar
  133. 133.
    X. Zhong, X. Wu, W. Zhou, K. Sheng, An All-SiC High-frequency boost DC–DC converter operating at 320 °C junction temperature. IEEE Trans. Power Electron. 29(10), 5091–5096 (2014)CrossRefGoogle Scholar
  134. 134.
    F. Blaabjerg, M. Liserre, K. Ma, Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48(2), 708–719 (2012)CrossRefGoogle Scholar
  135. 135.
    C. Ensslin, M. Durstewitz, B. Hahn, B. Lange, K. Rohrig, German Wind Energy Report. ISET (2005)Google Scholar
  136. 136.
    O.S. Senturk, L. Helle, S. Munk-Nielsen, P. Rodriguez, R. Teodorescu, Converter structure-based power loss and static thermal modeling of the press-pack IGBT three-level ANPC VSC applied to multi-MW wind turbines. IEEE Trans. Ind. Appl. 47(6), 2505–2515 (2011)CrossRefGoogle Scholar
  137. 137.
    F. Blaabjerg, K. Ma, D. Zhou, Power electronics and reliability in renewable energy systems, in 2012 IEEE International Symposium on Industrial Electronics (ISIE) (2012), pp. 19–30Google Scholar
  138. 138.
    J.-S. Lee, K.B. Lee, Variable DC-link voltage algorithm with a wide range of maximum power point tracking for a two-string PV system. Energies 6(1), 58–78 (2013)CrossRefGoogle Scholar
  139. 139.
    F. Gao, D. Li, P.C. Loh, Y. Tang, P. Wang, Indirect dc-link voltage control of two-stage single-phase PV inverter, in IEEE Energy Conversion Congress and Exposition, 2009. ECCE 2009 (2009), pp. 1166–1172Google Scholar
  140. 140.
    K. Han, G. Chen, A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform, in Power Electronics and Motion Control Conference, 2009. IPEMC’09. IEEE 6th International (2009), pp. 2255–2259Google Scholar
  141. 141.
    F.F.M. El-Sousy, M. Orabi, H. Godah, Maximum power point tracking control scheme for grid connected variable speed wind driven self-excited induction generator. J. Power Electron. 6(1), 52–66 (2006)Google Scholar
  142. 142.
    Y. Bekakra, D.B. Attous, DFIG sliding mode control fed by back-to-back PWM converter with DC-link voltage control for variable speed wind turbine. Front. Energy 8(3), 345–354 (2014)CrossRefGoogle Scholar
  143. 143.
    U. Dayaratne, S. Tennakoon, J.S. Knight, N. Shammas, Minimum DC link voltages for the generator bridge converter of a SCIG based variable speed wind turbine with fully rated converters. Paper presented at the International Conference on Renewable Energies and Power Quality (ICREPQ 11), Las Palmas de Gran Canaria (Spain, 2011), vol. n/a, p. onlineGoogle Scholar
  144. 144.
    U.I. Dayaratne, S.B. Tennakoon, N.Y.A. Shammas, J.S. Knight, Investigation of variable DC link voltage operation of a PMSG based wind turbine with fully rated converters at steady state, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011), pp. 1–10Google Scholar
  145. 145.
    C.-Y. Yu, J. Tamura, R.D. Lorenz, Control method for calculating optimum DC bus voltage to improve drive system efficiency in variable DC bus drive systems, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 2992–2999Google Scholar
  146. 146.
    X. Pei, Y. Kang, J. Chen, Analysis and calculation of DC-link current and voltage ripple for three-phase inverter with unbalanced loads, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 1565–1572Google Scholar
  147. 147.
    J. Lemmens, J. Driesen, P. Vanassche, Dynamic DC-link voltage adaptation for thermal management of traction drives, in 2013 IEEE Energy Conversion Congress and Exposition (ECCE) (2013), pp. 180–187Google Scholar
  148. 148.
    J. Lemmens, J. Driesen, P. Vanassche, Thermal management in traction applications as a constraint optimal control problem, in 2012 IEEE Vehicle Power and Propulsion Conference (VPPC) (2012), pp. 36–41Google Scholar
  149. 149.
    M. Andresen, M. Liserre, Impact of active thermal management on power electronics design. Microelectron. Reliab. 54(9–10), 1935–1939 (2014)CrossRefGoogle Scholar
  150. 150.
    M. Honsberg, T. Radke, 3-level IGBT modules with trench gate IGBT and their thermal analysis in UPS, PFC and PV operation modes, in 13th European Conference on Power Electronics and Applications, 2009. EPE’09 (2009), pp. 1–7Google Scholar
  151. 151.
    K. Ma, M. Liserre, F. Blaabjerg, Reactive power influence on the thermal cycling of multi-MW wind power inverter, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 262–269Google Scholar
  152. 152.
    K. Ma, M. Liserre, F. Blaabjerg, Reactive power control methods for improved reliability of wind power inverters under wind speed variations, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 3105–3112Google Scholar
  153. 153.
    M.A. Elgendy, B. Zahawi, D.J. Atkinson, Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 3(1), 21–33 (2012)CrossRefGoogle Scholar
  154. 154.
    G.J. Kish, J.J. Lee, P.W. Lehn, Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking. IET Renew. Power Gener. 6(4), 259–266 (2012)CrossRefGoogle Scholar
  155. 155.
    F. Zhang, J. Maddy, G. Premier, A. Guwy, Novel current sensing photovoltaic maximum power point tracking based on sliding mode control strategy. Sol. Energy 118, 80–86 (2015)CrossRefGoogle Scholar
  156. 156.
    M.H. Moradi, A.R. Reisi, A hybrid maximum power point tracking method for photovoltaic systems. Sol. Energy 85(11), 2965–2976 (2011)CrossRefGoogle Scholar
  157. 157.
    J. Ahmad, A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays, in 2010 2nd International Conference on Software Technology and Engineering (ICSTE), vol. 1 (2010), pp. V1-247–V1-250Google Scholar
  158. 158.
    D.P. Quoc, Q.N. Nhat, L.M. Phuong, L.D. Khoa, N.T. D. Vu, A.N. Bao, H.H. Lee, The new combined maximum power point tracking algorithm using fractional estimation in photovoltaic systems, in 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS) (2011), pp. 919–923Google Scholar
  159. 159.
    E. Kabalci, Design and analysis of a hybrid renewable energy plant with solar and wind power. Energy Convers. Manag. 72, 51–59 (2013)CrossRefGoogle Scholar
  160. 160.
    W. Marańda, M. Piotrowicz, Efficiency of maximum power point tracking in photovoltaic system under variable solar irradiance. Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 713–721 (2014)Google Scholar
  161. 161.
    R. Haroun, A. El Aroudi, A. Cid-Pastor, G. Garica, C. Olalla, L. Martinez-Salamero, Impedance matching in photovoltaic systems using cascaded boost converters and sliding-mode control. IEEE Trans. Power Electron. 30(6), 3185–3199 (2015)CrossRefGoogle Scholar
  162. 162.
    Y. Liu, M. Li, X. Ji, X. Luo, M. Wang, Y. Zhang, A comparative study of the maximum power point tracking methods for PV systems. Energy Convers. Manag. 85, 809–816 (2014)CrossRefGoogle Scholar
  163. 163.
    I. Houssamo, F. Locment, M. Sechilariu, Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms. Renew. Energy 35(10), 2381–2387 (2010)CrossRefGoogle Scholar
  164. 164.
    M.A.G. de Brito, L.P. Sampaio, G. Luigi, G.A. e Melo, C.A. Canesin, comparative analysis of MPPT techniques for PV applications, in 2011 International Conference on Clean Electrical Power (ICCEP) (2011), pp. 99–104Google Scholar
  165. 165.
    I.V. Banu, R. Beniuga, M. Istrate, Comparative analysis of the perturb-and-observe and incremental conductance MPPT methods, in 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (2013), pp. 1–4Google Scholar
  166. 166.
    R.F. Coelho, F. Concer, D.C. Martins, A study of the basic DC-DC converters applied in maximum power point tracking, in Power Electronics Conference, 2009. COBEP’09. Brazilian (2009), pp. 673–678Google Scholar
  167. 167.
    A.M. Atallah, A.Y. Abdelaziz, R.S. Jumaah, Implementation of perturb and observe MPPT of PV system with direct control method using buck and buck-boost converters. Electron. Instrum. Eng. Int. J. EEIEJ 1(1) (2014)Google Scholar
  168. 168.
    G.M.S. Azevedo, M.C. Cavalcanti, K.C. Oliveira, F.A.S. Neves, Z.D. Lins, Comparative evaluation of maximum power point tracking methods for photovoltaic systems. J. Sol. Energy Eng. 131(3), 031006 (2009)CrossRefGoogle Scholar
  169. 169.
    K. Ishaque, Z. Salam, G. Lauss, The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl. Energy 119, 228–236 (2014)CrossRefGoogle Scholar
  170. 170.
    S.K. Dash, D. Verma, S. Nema, R.K. Nema, Comparative analysis of maximum power point (MPP) tracking techniques for solar PV application using MATLAB simulink. Recent Adv. Innov. Eng. (ICRAIE) 2014, 1–7 (2014)Google Scholar
  171. 171.
    B. Subudhi, R. Pradhan, A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy 4(1), 89–98 (2013)CrossRefGoogle Scholar
  172. 172.
    A. Mahdi, W. Tang, H. Wu, A. Mahdi, Improvement of a MPPT algorithm for PV systems and its experimental validation. Paper presented at the 10th International Conference on Renewable Energies and Power Quality (Granada, Spain, 2010), pp. 1–6Google Scholar
  173. 173.
    A.M. Noman, K.E. Addoweesh, H.M. Mashaly, DSPACE real-time implementation of MPPT-based FLC method. Int. J. Photoenergy 2013, e549273 (2013)CrossRefGoogle Scholar
  174. 174.
    A.M. Noman, K.E. Addoweesh, H.M. Mashaly, Simulation and dSPACE hardware implementation of the MPPT techniques using buck boost converter, in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE) (2014), pp. 1–8Google Scholar
  175. 175.
    A. Mondal, S. Yuvarajan, MPPT scheme for small scale photovoltaic systems using dSPACE, in 2012 IEEE Green Technologies Conference (2012), pp. 1–3Google Scholar
  176. 176.
    G. Graditi, G. Adinolfi, G.M. Tina, Photovoltaic optimizer boost converters: temperature influence and electro-thermal design. Appl. Energy 115, 140–150 (2014)CrossRefGoogle Scholar
  177. 177.
    G. Aurilio, M. Balato, G. Graditi, C. Landi, M. Luiso, M. Vitelli, Fast hybrid MPPT technique for photovoltaic applications: numerical and experimental validation. Adv. Power Electron. 2014, e125918 (2014)CrossRefGoogle Scholar
  178. 178.
    Y. Yang, H. Wang, F. Blaabjerg, T. Kerekes, A hybrid power control concept for PV inverters with reduced thermal loading. IEEE Trans. Power Electron. 29(12), 6271–6275 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of EngineeringThe Manchester Metropolitan UniversityManchesterUnited Kingdom

Personalised recommendations