Skip to main content

A Direct Method for Predicting the High-Cycle Fatigue Regime of Shape-Memory Alloys Structures

  • Chapter
  • First Online:
  • 587 Accesses

Abstract

Shape Memory Alloys (SMAs) belong to the class of so-called smart materials that offer promising perspectives in various fields such as aeronautics, robotics, biomedicals or civil engineering. For elastic-plastic materials, there is an established correlation between fatigue and energy dissipation. In particular, high-cycle fatigue occurs when the energy dissipation remains bounded in time. Although the physical mechanisms in SMAs differ from plasticity, the hysteresis that is commonly observed in the stress-strain response of those materials shows that some energy dissipation occurs. It can be reasonably assumed that situations where the energy dissipation remains bounded are the most favorable for fatigue durability. In this contribution, we present a direct method for determining if the energy dissipation in a SMA structure (submitted to a prescribed loading history) is bounded or not. That method is direct in the sense that nonlinear incremental analysis is completely bypassed. The proposed method rests on a suitable extension of the well-known Melan theorem. An application related to biomedical stents is presented to illustrate the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn YJ, Bertocchi E, Barber J (2008) Shakedown of coupled two-dimensional discrete frictional systems. J Mech Phys Solids 56:3433–3440

    Article  MATH  Google Scholar 

  2. Anand L, Gurtin M (2003) Thermal effects in the superelasticity of crystalline shape-memory materials. J Mech Phys Solids 51:1015–1058

    Article  MathSciNet  MATH  Google Scholar 

  3. Artioli E, Bisegna P (2015) An incremental energy minimization state update algorithm for 3d phenomenological internal-variable sma constitutive models based on isotropic flow potentials. Int J Num Meth Eng 105:197–220

    Article  MathSciNet  MATH  Google Scholar 

  4. Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Num Meth Eng 61:807–836

    Article  MathSciNet  MATH  Google Scholar 

  5. Auricchio F, Bonetti E, Scalet G, Ubertini F (2014) Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation. Int J Plast 59:30–54

    Article  Google Scholar 

  6. Auricchio F, Constantinescu A, Menna C, Scalet G (2016) A shakedown analysis of high cycle fatigue of shape memory alloys. Int J Fatigue 87:112–123

    Article  Google Scholar 

  7. Bhattacharya K (2003) Microstructure of martensite. Oxford University Press

    Google Scholar 

  8. Brézis H (1972) Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam

    Google Scholar 

  9. Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T, Tielbeek A, Anderson J, Wiesinger B, Tepe G, Lansky A (2005) Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol 16:331–338

    Article  Google Scholar 

  10. Feng X, Sun Q (2007) Shakedown analysis of shape memory alloy structures. Int J Plasticity 23:183–206

    Article  MATH  Google Scholar 

  11. Frémond M (2002) Non-smooth thermomechanics. Springer

    Google Scholar 

  12. Govindjee S, Miehe C (2001) A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput Meth Appl Mech Eng 191:215–238

    Article  MATH  Google Scholar 

  13. Hackl K, Heinen R (2008) An upper bound to the free energy of \(n\)-variant polycrystalline shape memory alloys. J Mech Phys Solids 56:2832–2843

    Article  MathSciNet  MATH  Google Scholar 

  14. Hecht F (2012) New development in FreeFem++. J Numer Math 20:251–265

    Article  MathSciNet  MATH  Google Scholar 

  15. Koiter WT (1960) General theorems for elastic-plastic solids. In: Progress in solid mechanics

    Google Scholar 

  16. Mandel J, Zarka J, Halphen B (1977) Adaptation d’une structure elastoplastique a ecrouissage cinematique. Mech Res Commun 4:309–314

    Article  MATH  Google Scholar 

  17. Manson SS, Halford GR (2006) Fatigue and durability of structural materials. ASM International

    Google Scholar 

  18. Melan E (1936) Theorie statisch unbestimmter systeme AUS ideal-plastischen Baustoff. Sitz Berl Ak Wiss 145:195–218

    Google Scholar 

  19. Peigney M (2008) Recoverable strains in composite shape memory alloys. J Mech Phys Solids 56:360–375

    Article  MathSciNet  MATH  Google Scholar 

  20. Peigney M (2009) A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys. J Mech Phys Solids 57:970–986

    Article  MathSciNet  Google Scholar 

  21. Peigney M (2010) Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics. Eur J Mech A 29:784–793

    Article  MathSciNet  Google Scholar 

  22. Peigney M, Seguin JP, Hervé-Luanco E (2011) Numerical simulation of shape memory alloys structures using interior-point methods. Int J Sol Struct 48:2791–2799

    Article  Google Scholar 

  23. Peigney M, Seguin JP (2013) An incremental variational approach to coupled thermo-mechanical problems in anelastic solids. Application to shape-memory alloys. Int J Sol Struct 50:4043–4054

    Article  Google Scholar 

  24. Peigney M (2013) On the energy-minimizing strains in martensitic microstructures-Part 1: geometrically nonlinear theory. J Mech Phys Solids 61:1489–1510

    Article  MathSciNet  MATH  Google Scholar 

  25. Peigney M (2013) On the energy-minimizing strains in martensitic microstructures-Part 2: geometrically linear theory. J Mech Phys Solids 61:1511–1530

    Article  MathSciNet  MATH  Google Scholar 

  26. Peigney M (2014) On shakedown of shape memory alloys structures. Mech Ann Solid Struct 6:17–28

    Article  Google Scholar 

  27. Peigney M (2014) Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli. J Mech Phys Solids 71:112–131

    Article  MathSciNet  MATH  Google Scholar 

  28. Pelton AR, Schroeder V, Mitchell MR, Gong XY, Barney M, Robertson SW (2008) Fatigue and durability of Nitinol stents. J Mech Behav Bio Mat 1:153–164

    Article  Google Scholar 

  29. Rudin W (1987) Real and complex analysis. McGraw-Hill, Boston

    Google Scholar 

  30. Sabet S, Mlekusch W, Amighi J, Minar E, Schillinger M (2005) Primary patency of long-segment self-expanding nitinol stents in the femoropopliteal arteries. J Endovasc Ther 12:6–12

    Article  Google Scholar 

  31. Scalet G, Peigney M (2017) A robust and efficient radial return algorithm based on incremental energy minimization for the 3D Souza-Auricchio model for shape memory alloys. Eur J Mech A 61:364–382

    Article  MathSciNet  Google Scholar 

  32. Schwartz L (1967) Analyse mathmatique, vol 94. Hermann, Paris

    Google Scholar 

  33. Souza A, Mamiya E, Zouain N (1998) Three-dimensional model for solids undergoing stress-induced phase transformations. Eur J Mech A 17:789–806

    Article  MATH  Google Scholar 

  34. Symonds PS (1951) Shakedown in continuous media. J Appl Mech 18:85–89

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Peigney .

Editor information

Editors and Affiliations

Appendix

Appendix

For the sake of completeness, we give in this Appendix a proof of Theorem 1. Consider a solution \(({\varvec{\varepsilon }},{\varvec{\alpha }},{\varvec{\sigma }},{\varvec{A}}^r,{\varvec{A}}^d)\) to the evolution problem (1)–(13). By (11) we have

$$ {\varvec{A}}= {\varvec{A}}^d + {\varvec{A}}^r$$

with

$$\begin{aligned} \dot{{\varvec{\alpha }}}\in \partial I_{{\varvec{\mathscr {C}}}}({\varvec{A}}^d );\ {\varvec{A}}^r \in \partial I_{{\varvec{\mathscr {T}}}}({\varvec{\alpha }}). \end{aligned}$$
(23)

The positive quantity

$$D(t)=\int _{\varOmega } {\varvec{A}}^d.\dot{{\varvec{\alpha }}}d{\varvec{x}}$$

can be interpreted as the rate of dissipated energy. Note that D(t) is positive because of the principle of maximum dissipation (6) and the fact that the elasticity domain \({\varvec{\mathscr {C}}}\) contains the origin. Under the condition (16), we show in the following that the total dissipated energy \(\int _0^T D(t)dt\) remains bounded as \(T\rightarrow \infty \). To that purpose, consider the positive functional W(t) defined as

$$ W(t) = \displaystyle \int _{\varOmega } w({\varvec{\varepsilon }}(t)-{\varvec{\varepsilon }}^E(t),{\varvec{\alpha }}(t)) \, d{\varvec{x}}.$$

By time-differentiation we have

$$ \dot{W}(t) = \int _{\varOmega } [({\varvec{\sigma }}-{\varvec{\sigma }}^E):(\dot{{\varvec{\varepsilon }}}-\dot{{\varvec{\varepsilon }}}^E-{\varvec{K}}:\dot{{\varvec{\alpha }}})+ f'({\varvec{\alpha }}):\dot{{\varvec{\alpha }}} ]\, d{\varvec{x}}.$$

Since \({\text {div}}({\varvec{\sigma }}-{\varvec{\sigma }}^E)=0\) in \(\varOmega \), \(({\varvec{\sigma }}-{\varvec{\sigma }}^E). {\varvec{n}}=0\) on \(\varGamma _T\) and \({\varvec{u}}-{\varvec{u}}^E=0\) on \(\varGamma _u\), the principle of virtual power gives \(\int _{\varOmega }({\varvec{\sigma }}-{\varvec{\sigma }}^{E}):(\dot{{\varvec{\varepsilon }}}-\dot{{\varvec{\varepsilon }}}^E) \, d{\varvec{x}}= 0\). Therefore

$$ \dot{W}(t) = \int _{\varOmega } [-{\varvec{K}}^T:({\varvec{\sigma }}-{\varvec{\sigma }}^E)+f'({\varvec{\alpha }})]:\dot{{\varvec{\alpha }}} \, d{\varvec{x}}$$

which using (3) and (23) can be rewritten as

$$\begin{aligned} \dot{W}(t) = -D(t) + \int _{\varOmega } [-{\varvec{A}}^r+{\varvec{K}}^T:{\varvec{\sigma }}^E]:\dot{{\varvec{\alpha }}} \, d{\varvec{x}}. \end{aligned}$$
(24)

Let \(({\varvec{A}}_*^r,m)\) satisfying (16). Setting \({\varvec{A}}_*^d=m{\varvec{K}}^T:{\varvec{\sigma }}^E(t)-{\varvec{A}}_{*}^r\), we find

$$\begin{aligned} \dot{W}(t) = -D(t) + \int _{\varOmega } [-{\varvec{A}}^r+\frac{1}{m}({{\varvec{A}}^d_{*}}+{{\varvec{A}}^r_{*}})]:\dot{{\varvec{\alpha }}} \, d{\varvec{x}}. \end{aligned}$$
(25)

The property (16) shows that \({\varvec{A}}_*^d \in {\varvec{\mathscr {C}}}\) for \(t>{\tau }\). Since \(\dot{{\varvec{\alpha }}}\in \partial I_{{\varvec{\mathscr {C}}}}({\varvec{A}}^d)\), the principle of maximum dissipation (6) gives

$$\begin{aligned} ({\varvec{A}}^d-{\varvec{A}}_{*}^d):\dot{{\varvec{\alpha }}}\ge 0 . \end{aligned}$$
(26)

Moreover, since \({\varvec{A}}^r\in \partial I_{{\varvec{\mathscr {T}}}}({\varvec{\alpha }})\) and \({\varvec{\alpha }}\in {\varvec{\mathscr {T}}}\), Eq. (12) gives \( {\varvec{A}}^r(t):({\varvec{\alpha }}(t)-{\varvec{\alpha }}(t'))\ge 0\) for any \(t'\). In the limit \(t' \longrightarrow t\) with \(t'<t\), we obtain

$$\begin{aligned} {\varvec{A}}^r:\dot{{\varvec{\alpha }}} \ge 0 . \end{aligned}$$
(27)

Combining (26)–(27) with (25) gives

$$\begin{aligned} \dot{W}(t) \le \frac{1-m}{m}D(t) + \frac{1}{m}\int _{\varOmega } {{\varvec{A}}^r_{*}}:\dot{{\varvec{\alpha }}} \, d{\varvec{x}}. \end{aligned}$$
(28)

Since \({\varvec{A}}^r_{*}\) is time-independent, the time-integration of (28) on a time interval \([{\tau },T]\) yields

$$\begin{aligned} \begin{array}{ll} (m-1)\displaystyle \int _{\tau }^T D(t)\, dt \le &{} mW({\tau }) + \displaystyle \int _\varOmega {{\varvec{A}}^r_{*}}:({{\varvec{\alpha }}}(T)-{\varvec{\alpha }}({\tau }))\, d{\varvec{x}}\\ \end{array} \end{aligned}$$
(29)

where the property \(W(T)\ge 0\) has been used. The set \({\varvec{\mathscr {T}}}\) being bounded, there exists a positive constant K such that \(\Vert {\varvec{\alpha }}\Vert \le K\) for any \({\varvec{\alpha }}\in {\varvec{\mathscr {T}}}\). Therefore

$$\int _\varOmega {\varvec{A}}_{*}^r:({\varvec{\alpha }}(t)-{\varvec{\alpha }}({\tau }))\, d{\varvec{x}}\le \displaystyle 2K \int _\varOmega \Vert {\varvec{A}}_{*}^r\Vert \, d{\varvec{x}}.$$

Combining that inequality with (29) gives

$$ (m-1)\displaystyle \int _{\tau }^T D(t)\, dt \le mW({\tau }) + \displaystyle 2K \int _\varOmega \Vert {\varvec{A}}_{*}^r\Vert \, d{\varvec{x}}. $$

The right-hand side of that inequality is independent of T. This proves that the dissipated energy \(\int _{\tau }^T D(t)\) remains bounded as \(T\longrightarrow +\infty \).

From there we can show (under some technical assumptions) that \({\varvec{\alpha }}(t)\) tends to a limit as \(t\longrightarrow +\infty \). Assume that the elasticity domain \({\varvec{\mathscr {C}}}\) contains a ball of radius \(r>0\) centered at the origin. In such a condition, we have \(r \dot{{\varvec{\alpha }}}(t) / \Vert \dot{{\varvec{\alpha }}}(t)\Vert \in {\varvec{\mathscr {C}}}\) for any t. Using the principle of maximum dissipation (6), we find

$$ 0 \le \dot{{\varvec{\alpha }}}: ({\varvec{A}}^d - r \frac{ \dot{{\varvec{\alpha }}}}{ \Vert \dot{{\varvec{\alpha }}}\Vert }).$$

Hence

$$ \Vert \dot{{\varvec{\alpha }}} \Vert \le \frac{1}{r} {\varvec{A}}^d:\dot{{\varvec{\alpha }}} $$

which after space integration gives

$$\begin{aligned} \int _{\varOmega } \Vert \dot{{\varvec{\alpha }}} \Vert dx \le \frac{1}{r} D(t) . \end{aligned}$$
(30)

Let \(\mathbb A\) be the vectorial space in which \({\varvec{\alpha }}({\varvec{x}})\) takes values and let \(L_1(\varOmega ,\mathbb A)\) be the space of integrable functions with values in \(\mathbb A\). The inequality (30) can be rewritten as

$$\Vert \dot{{\varvec{\alpha }}}\Vert _{L_1(\varOmega ,\mathbb A)} \le \frac{1}{r} D(t)$$

where \(\Vert \cdot \Vert _{L_1(\varOmega ,\mathbb A)}\) is the norm in \(L_1(\varOmega ,\mathbb A)\). Since \(\int _{0}^T D(t)\) is bounded as \(T\longrightarrow +\infty \), the integral \(\int _0 ^T \Vert \dot{{\varvec{\alpha }}}(t)\Vert _{L_1(\varOmega ,\mathbb A)} dt \) converges as \(T\longrightarrow +\infty \). From Riesz-Fischer theorem, the space \(L_1(\varOmega ,\mathbb {A})\) is a Banach space. It follows (see [29] or Theorem 97 in [32]) that the integral \(\int _0 ^T \dot{{\varvec{\alpha }}}(t) dt \) converges as \(T\longrightarrow \infty \). Hence \({\varvec{\alpha }}(t)\) converges towards a limit as \(T\longrightarrow \infty \).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Peigney, M. (2018). A Direct Method for Predicting the High-Cycle Fatigue Regime of Shape-Memory Alloys Structures. In: Barrera, O., Cocks, A., Ponter, A. (eds) Advances in Direct Methods for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-59810-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59810-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59808-6

  • Online ISBN: 978-3-319-59810-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics