Skip to main content

Algebraic Differential Equations

  • Chapter
  • First Online:
  • 1309 Accesses

Part of the book series: Universitext ((UTX))

Abstract

One of the most difficult problems in the theory of Algebraic Differential Equations is to decide whether or not the solutions are meromorphic in the plane. In case this question has been answered satisfactorily, which by experience requires particular strategies adapted to the equations under consideration, there remain several major problems to be solved: to determine the Nevanlinna functions, the distribution of zeros and poles, zero- and pole-free regions, asymptotic expansions on pole-free regions, and solutions deviating from the ‘generic’ case. This program will be pursued in the subsequent sections on linear, Riccati, and implicit first-order differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Let f be a bounded holomorphic function on some unbounded domain D. By definition, the cluster set of f as z on D is the set of all limits lim n f(z n ) with z n in D. The cluster set is always compact, and connected if D is locally connected at infinity. A sufficient condition for the latter is that any two points a, bD may be joined by a curve in D ∩{ z: | z | ≥ min{ | a |, | b | }}. For example, this is true for sectors, and also for sectors with mutually disjoint ‘holes’ | zz j | ≤ r j , z j .

  2. 2.

    maple code decodedt1:=1+zˆ2-tˆ2; r1:=tˆ2+zˆ2; r2:=t+z; r:=r1/r2; t′ = 1 + z 2t 2; \(w = \mathfrak{r}(z,\mathsf{t}) = \frac{\mathfrak{r}_{1}(z,\mathsf{t})} {\mathfrak{r}_{2}(z,\mathsf{t})} = \frac{z^{2}+\mathsf{t}^{2}} {z+\mathsf{t}}\) s:=diff(r,z)+diff(r,t)∗t1; s1:=numer(s); s2:=denom(s);\(w' = \mathfrak{s}(z,\mathsf{t}) = \frac{\mathfrak{s}_{1}(z,\mathsf{t})} {\mathfrak{s}_{2}(z,\mathsf{t})}\) P:=resultant(x∗r2-r1,y∗s2-s1,t); P(z, w, w′) = 0Delta:=discrim(P,y); solve(Delta,x); compute the discriminant and its roots

  3. 3.

    The authors seemed to be unaware of Malmquist’s Second Theorem, or were in doubt about his reasoning. One reason might be that several elegant and transparent proofs of his First Theorem were known, but none for his Second. Eremenko’s commented in [35]: “The paper [42] (Malmquist’s paper [114] here) has had practically no influence on the work of other authors []”.

  4. 4.

    This is a most non-trivial fact, known as Tsen’s Theorem (C. Tsen, Divisionsalgebren über Funktionenkörpern, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1933), 335–339), communicated to me by A. Eremenko. A local form generalising Tsen’s Theorem was proved by Lang (On quasi algebraic closure, Ann. of Math. 55 (1952), 373–390).

  5. 5.

    Equations (5.22) and (5.23) correspond to w = R(e az) when (5.19) has genus zero.

  6. 6.

    One cannot expect to re-construct the parametrisation \(w = \mathfrak{r}(z,\mathsf{t})\) and \(\mathsf{t}' =\hat{ P}(z) -\mathsf{t}^{2}\). The fact that \(\mathsf{t},w \in \mathfrak{Y}_{1,1}\) and \(\mathfrak{w} = \frac{\coth ^{2}\mathfrak{z}} {\coth \mathfrak{z}-2}\) suggests \(w = \frac{\mathsf{t}^{2}} {\mathsf{t}-2z-c_{0}}\) and \(\hat{P}(z) = z^{2} + a_{1}z + a_{0}\), actually a 1 = a 0 = c 0 = 0.

References

  1. L. Ahlfors, Beiträge zur Theorie der meromorphen Funktionen, in VII Congrés des Mathematiciens Scandinavia (Oslo, 1929), pp. 84–88

    Google Scholar 

  2. L. Ahlfors, Complex Analysis (McGraw-Hill, New York, 1979)

    MATH  Google Scholar 

  3. S. Bank, On zero-free regions for solutions of nth order linear differential equations. Comment. Math. Univ. St. Pauli 36, 199–213 (1987)

    MathSciNet  MATH  Google Scholar 

  4. S. Bank, A note on the zeros of solutions of w + P(z)w = 0, where P is a polynomial. Appl. Anal. 25, 29–41 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bank, A note on the location of complex zeros of solutions of linear differential equations. Complex Variables 12, 159–167 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bank, R. Kaufman, On meromorphic solutions of first order differential equations. Comment. Math. Helv. 51, 289–299 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bank, R. Kaufman, On the order of growth of meromorphic solutions of first-order differential equations. Math. Ann. 241, 57–67 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bank, R. Kaufman, On Briot–Bouquet differential equations and a question of Einar Hille. Math. Z. 177, 549–559 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Bank, G. Frank, I. Laine, Über die Nullstellen von Lösungen linearer Differentialgleichungen. Math. Z. 183, 355–364 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Beardon, T.W. Ng, Parametrizations of algebraic curves. Ann. Acad. Sci. Fenn. 31, 541–554 (2006)

    MathSciNet  MATH  Google Scholar 

  11. W. Bergweiler, On a theorem of Gol’dberg concerning meromorphic solutions of algebraic differential equations. Complex Variables 37, 93–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Bergweiler, Rescaling principles in function theory, in Proceedings of the International Conference on Analysis and Its Applications, 14 p. (2000)

    Google Scholar 

  13. W. Bergweiler, Bloch’s principle. Comput. Meth. Funct. Theory (CMFT) 6, 77–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order. Rev. Matem. Iberoam. 11, 355–373 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen (Springer, New York, 1965)

    Book  MATH  Google Scholar 

  16. P. Boutroux, Recherches sur les transcendentes de M. Painlevé et l’étude asymptotique des équations différentielles du seconde ordre. Ann. École Norm. Supér. 30, 255–375 (1913); 31, 99–159 (1914)

    Google Scholar 

  17. D.A. Brannan, W.K. Hayman, Research problems in complex analysis. Bull. Lond. Math. Soc. 21, 1–35 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Brüggemann, On the zeros of fundamental systems of linear differential equations with polynomial coefficients. Complex Variables 15, 159–166 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Brüggemann, On solutions of linear differential equations with real zeros; proof of a conjecture of Hellerstein and Rossi. Proc. Am. Math. Soc. 113, 371–379 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Brüggemann, Proof of a conjecture of Frank and Langley concerning zeros of meromorphic functions and linear differential polynomials. Analysis 12, 5–30 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Cartan, Un nouveau théorème d’unicité relatif aux fonctions méromorphes. C. R. Acad. Sci. Paris 188, 301–303 (1929)

    MATH  Google Scholar 

  22. H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données. Math. Cluj 7, 5–31 (1933)

    MATH  Google Scholar 

  23. H. Chen, Y. Gu, An improvement of Marty’s criterion and its applications. Sci. China Ser. A 36, 674–681 (1993)

    MathSciNet  MATH  Google Scholar 

  24. C.T. Chuang, Une généralisation d’une inégalité de Nevanlinna. Sci. Sinica 13, 887–895 (1964)

    MathSciNet  MATH  Google Scholar 

  25. P. Clarkson, J. McLeod, Integral equations and connection formulae for the Painlevé equations, in Painlevé Transcendents, Their Asymptotics and Physical Applications, ed. by P. Winternitz, D. Levi (Springer, New York, 1992), pp. 1–31

    Google Scholar 

  26. C. Classen, Subnormale Lösungen der vierten Painlevéschen Differentialgleichung, Ph.D. thesis, TU Dortmund (2015)

    Google Scholar 

  27. J. Clunie, The derivative of a meromorphic function. Proc. Am. Math. Soc. 7, 227–229 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Clunie, On integral and meromorphic functions. J. Lond. Math. Soc. 37, 17–27 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Clunie, The composition of entire and meromorphic functions, in Mathematical Essays Dedicated to A.J. Macintyre (Springer, New York, 1970), pp. 75–92

    Google Scholar 

  30. J. Clunie, W.K. Hayman, The spherical derivative of integral and meromorphic functions. Comment. Math. Helv. 40, 117–148 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  31. T.P. Czubiak, G.G. Gundersen, Meromorphic functions that share pairs of values. Complex Variables 34, 35–46 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Doeringer, Exceptional values of differential polynomials. Pac. J. Math. 98, 55–62 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Edrei, W.H.J. Fuchs, S. Hellerstein, Radial distribution of the values of a meromorphic function. Pac. J. Math. 11, 135–151 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Eremenko, Meromorphic solutions of algebraic differential equations. Russ. Math. Surv. 37, 61–95 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Eremenko, Meromorphic solutions of first-order algebraic differential equations. Funct. Anal. Appl. 18, 246–248 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Eremenko, Normal holomorphic curves from parabolic regions to projective spaces. arXiv:0710.1281v1 (2007)

    Google Scholar 

  37. A. Eremenko, Lectures on Nevanlinna Theory (2012, preprint)

    Google Scholar 

  38. A. Eremenko, On the second main theorem of Cartan. Ann. Acad. Sci. Fenn. 39, 859–871 (2014). Correction to the paper “On the second main theorem of Cartan”. Ann. Acad. Sci. Fenn. 40, 503–506 (2015)

    Google Scholar 

  39. A. Eremenko, A. Gabrielov, Singular pertubation of polynomial potentials with application to PT-symmetric families. Mosc. Math. J. 11, 473–503 (2011)

    MathSciNet  MATH  Google Scholar 

  40. A. Eremenko, S. Merenkov, Nevanlinna functions with real zeros. Ill. J. Math. 49, 1093–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  41. A. Eremenko, M. Sodin, Iteration of rational functions and the distribution of the values of the Poincaré function. J. Sov. Math. 58, 504–509 (1992)

    Article  Google Scholar 

  42. A. Eremenko, L.W. Liao, T.W. Ng, Meromorphic solutions of higher order Briot–Bouquet differential equations. Math. Proc. Camb. Phil. Soc. 146, 197–206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. S.J. Favorov, Sunyer-i-Balaguer’s almost elliptic functions and Yosida’s normal functions. J. d’Anal. Math. 104, 307–340 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Fokas, A. Its, A. Kapaev, V. Novokshënov, Painlevé Transcendents: The Riemann–Hilbert Approach. Mathematical Surveys and Monographs, vol. 128 (American Mathematical Society, Providence, RI, 2006)

    Google Scholar 

  45. G. Frank, Picardsche Ausnahmewerte bei Lösungen linearer Differentialgleichungen. Manuscripta Math. 2, 181–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  46. G. Frank, Über eine Vermutung von Hayman über Nullstellen meromorpher Funktionen. Math. Z. 149, 29–36 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Frank, S. Hellerstein, On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients. Proc. Lond. Math. Soc. 53, 407–428 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Frank, G. Weissenborn, Rational deficient functions of meromorphic functions. Bull. Lond. Math. Soc. 18, 29–33 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  49. G. Frank, G. Weissenborn, On the zeros of linear differential polynomials of meromorphic functions. Complex Variables 12, 77–81 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. G. Frank, H. Wittich, Zur Theorie linearer Differentialgleichungen im Komplexen. Math. Z. 130, 363–370 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Frei, Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten. Comment. Math. Helvet. 35, 201–222 (1961)

    Article  MATH  Google Scholar 

  52. F. Gackstatter, I. Laine, Zur Theorie der gewöhnlichen Differentialgleichungen im Komplexen. Ann. Polon. Math. 38, 259–287 (1980)

    MathSciNet  MATH  Google Scholar 

  53. V.I. Gavrilov, The behavior of a meromorphic function in the neighbourhood of an essentially singular point. Am. Math. Soc. Transl. 71, 181–201 (1968)

    MATH  Google Scholar 

  54. V.I. Gavrilov, On classes of meromorphic functions which are characterised by the spherical derivative. Math. USSR Izv. 2, 687–694 (1968)

    Article  Google Scholar 

  55. V.I. Gavrilov, On functions of Yosida’s class (A). Proc. Jpn. Acad. 46, 1–2 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  56. A.A. Gol’dberg, On single-valued solutions of first order differential equations (Russian). Ukr. Math. Zh. 8, 254–261 (1956)

    Google Scholar 

  57. A.A. Gol’dberg, I.V. Ostrovskii, Value Distribution of Meromorphic Functions. Translations of Mathematical Monographs, vol. 236 (Springer, Berlin, 2008)

    Google Scholar 

  58. W.W. Golubew, Vorlesungen über Differentialgleichungen im Komplexen [German transl.] (Dt. Verlag d. Wiss. Berlin, 1958)

    Google Scholar 

  59. J. Grahl, Sh. Nevo, Spherical derivatives and normal families. J. d’Anal. Math. 117, 119–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. V. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane. De Gruyter Studies in Mathematical, vol. 28 (Walter de Gruyter, New York, 2002)

    Google Scholar 

  61. F. Gross, On the equation f n + g n = 1. Bull. Am. Math. Soc. 72, 86–88 (1966). Erratum ibid., p. 576

    Google Scholar 

  62. F. Gross, On the equation f n + g n = 1, II. Bull. Am. Math. Soc. 74, 647–648 (1968)

    Article  MATH  Google Scholar 

  63. F. Gross, C.F. Osgood, On the functional equation f n + g n = h n and a new approach to a certain class of more general functional equations. Indian J. Math. 23, 17–39 (1981)

    MathSciNet  MATH  Google Scholar 

  64. X.-Y. Gu, A criterion for normality of families of meromorphic functions (Chinese). Sci. Sin. Special Issue on Math. 1, 267–274 (1979)

    Google Scholar 

  65. G.G. Gundersen, Meromorphic functions that share three or four values. J. Lond. Math. Soc. 20, 457–466 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  66. G.G. Gundersen, Meromorphic functions that share four values. Trans. Am. Math. Soc. 277, 545–567 (1983); Correction to “Meromorphic functions that share four values.” Trans. Am. Math. Soc. 304, 847–850 (1987)

    Google Scholar 

  67. G. Gundersen, On the real zeros of solutions of f + A(z)f = 0, where A is entire. Ann. Acad. Sci. Fenn. 11, 275–294 (1986)

    MathSciNet  MATH  Google Scholar 

  68. G.G. Gundersen, Meromorphic functions that share three values IM and a fourth value CM. Complex Variables 20, 99–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  69. G. Gundersen, Meromorphic solutions of f 6 + g 6 + h 6 = 1. Analysis (München) 18, 285–290 (1998)

    MATH  Google Scholar 

  70. G. Gundersen, Solutions of f + P(z)f = 0 that have almost all real zeros. Ann. Acad. Sci. Fenn. 26, 483–488 (2001)

    MathSciNet  MATH  Google Scholar 

  71. G. Gundersen, Meromorphic solutions of f 5 + g 5 + h 5 = 1. Complex Variables 43, 293–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  72. G. Gundersen, Meromorphic functions that share five pairs of values. Complex Variables Elliptic Equ. 56, 93–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Gundersen, W.K. Hayman, The strength of Cartan’s version of Nevanlinna theory. Bull. Lond. Math. Soc. 36, 433–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. G. Gundersen, E. Steinbart, A generalization of the Airy integral for f z n f = 0. Trans. Am. Math. Soc. 337, 737–755 (1993)

    MathSciNet  MATH  Google Scholar 

  75. G. Gundersen, N. Steinmetz, K. Tohge, Meromorphic functions that share four or five pairs of values. Preprint (2016)

    Google Scholar 

  76. S. Hastings, J. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980)

    Article  MATH  Google Scholar 

  77. W.K. Hayman, Picard values of meromorphic functions and their derivative. Ann. Math. 70, 9–42 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  78. W.K. Hayman, Meromorphic Functions (Oxford University Press, Oxford, 1964)

    MATH  Google Scholar 

  79. W.K. Hayman, The local growth of power series: a survey of the Wiman–Valiron method. Can. Math. Bull. 17, 317–358 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  80. W.K. Hayman, Waring’s Problem für analytische Funktionen. Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1984, 1–13 (1985)

    MathSciNet  MATH  Google Scholar 

  81. S. Hellerstein, J. Rossi, Zeros of meromorphic solutions of second-order differential equations. Math. Z. 192, 603–612 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Hellerstein, J. Rossi, On the distribution of zeros of solutions of second-order differential equations. Complex Variables Theory Appl. 13, 99–109 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  83. G. Hennekemper, W. Hennekemper, Picardsche Ausnahmewerte von Ableitungen gewisser meromorpher Funktionen. Complex Variables 5, 87–93 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  84. E. Hille, Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, MA, 1969)

    MATH  Google Scholar 

  85. E. Hille, Ordinary Differential Equations in the Complex Domain (Wiley, New York, 1976)

    MATH  Google Scholar 

  86. E. Hille, Some remarks on Briot–Bouquet differential equations II. J. Math. Anal. Appl. 65, 572–585 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  87. E. Hille, Second-order Briot–Bouquet differential equations. Acta Sci. Math. (Szeged) 40, 63–72 (1978)

    MathSciNet  MATH  Google Scholar 

  88. A. Hinkkanen, I. Laine, Solutions of the first and second Painlevé equations are meromorphic. J. d’Anal. Math. 79, 345–377 (1999)

    Article  MATH  Google Scholar 

  89. A. Hinkkanen, I. Laine, Solutions of a modified third Painlevé equation are meromorphic. J. d’Anal. Math. 85, 323–337 (2001)

    Article  MATH  Google Scholar 

  90. A. Hinkkanen, I. Laine, The meromorphic nature of the sixth Painlevé transcendents. J. d’Anal. Math. 94, 319–342 (2004)

    Article  MATH  Google Scholar 

  91. A. Hinkkanen, I. Laine, Growth results for Painlevé transcendents. Math. Proc. Camb. Phil. Soc. 137, 645–655 (2004)

    Article  MATH  Google Scholar 

  92. P.C. Hu, P. Li, C.C. Yang, Unicity of Meromorphic Mappings (Kluwer Academic Publishers, Dordrecht/Boston/London, 2003)

    Book  MATH  Google Scholar 

  93. B. Huang, On the unicity of meromorphic functions that share four values. Indian J. Pure Appl. Math. 35, 359–372 (2004)

    MathSciNet  MATH  Google Scholar 

  94. E.L. Ince, Ordinary Differential Equations (Dover Publications, New York, 1956)

    MATH  Google Scholar 

  95. A. Its, A. Kapaev, Connection formulae for the fourth Painlevé transcendent; Clarkson–McLeod solution. J. Phys. A: Math. Gen. 31, 4073–4113 (1998)

    MATH  Google Scholar 

  96. G. Jank, L. Volkmann, Meromorphe Funktionen und Differentialgleichungen (Birkhäuser, Basel, 1985)

    MATH  Google Scholar 

  97. Y. Jiang, B. Huang, A note on the value distribution of f l(f (k))n. arXiv:1405.3742.v1 [math.CV] (2014)

    Google Scholar 

  98. N. Joshi, A. Kitaev, On Boutroux’s tritronqée solutions of the first Painlevé equation. Stud. Appl. Math. 107, 253–291 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  99. T. Kecker, A cubic polynomial Hamiltonian system with meromorphic solutions, in Computational Methods and Function Theory (CMFT), vol. 16 (Springer, Berlin, 2016), pp. 307–317

    MATH  Google Scholar 

  100. T. Kecker, Polynomial Hamiltonian systems with movable algebraic singularities. J. d’Anal. Math. 129, 197–218 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  101. S. Krantz, Function Theory of Several Complex Variables (AMS Chelsea Publishing, Providence, RI, 1992)

    MATH  Google Scholar 

  102. I. Laine, Nevanlinna Theory and Complex Differential Equations. De Gruyter Studies in Mathematics, vol. 15 (De Gruyter, Boston, 1993)

    Google Scholar 

  103. J.K. Langley, G. Shian, On the zeros of certain linear differential polynomials. J. Math. Anal. Appl. 153, 159–178 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  104. J.K Langley, Proof of a conjecture of Hayman concerning f and f . J. Lond. Math. Soc. 48, 500–514 (1993)

    Google Scholar 

  105. J.K. Langley, On the zeros of the second derivative. Proc. R. Soc. Edinb. 127, 359–368 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  106. J.K. Langley, An inequality of Frank, Steinmetz and Weissenborn. Kodai Math. J. 34, 383–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  107. P. Lappan, A criterion for a meromorphic functions to be normal. Comment. Math. Helv. 49, 492–495 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  108. O. Lehto, K. Virtanen, Boundary behaviour and normal meromorphic functions. Acta Math. 97, 47–65 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  109. A. Lohwater, Ch. Pommerenke, On normal meromorphic functions. Ann. Acad. Sci. Fenn. Ser. A I 550, 12 p. (1973)

    Google Scholar 

  110. B.J. Lewin [B.Ya. Levin], Nullstellenverteilung Ganzer Funktionen [German transl.] (Akademie Verlag, Berlin, 1962)

    Google Scholar 

  111. B.Ya. Levin, Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150 (American Mathematical Society, Providence, RI, 1996)

    Google Scholar 

  112. S.A. Makhmutov, Distribution of values of meromorphic functions of class \(\mathcal{W}_{p}\). Sov. Math. Dokl. 28, 758–762 (1983)

    Google Scholar 

  113. J. Malmquist, Sur les fonctions à un nombre fini de branches satisfaisant à une équation différentielle du premier ordre. Acta Math. 36, 297–343 (1913)

    Article  MathSciNet  Google Scholar 

  114. J. Malmquist, Sur les fonctions à un nombre fini de branches satisfaisant à une equation différentielle du premier ordre. Acta Math. 42, 59–79 (1920)

    Article  MathSciNet  Google Scholar 

  115. A.Z. Mokhon’ko, The Nevanlinna characteristics of certain meromorphic functions (Russian). Teor. Funkcii. Funkc. Anal. Prilozen 14, 83–87 (1971)

    Google Scholar 

  116. A.Z. Mokhon’ko, V.D. Mokhon’ko, Estimates for the Nevanlinna characteristics of some classes of meromorphic functions and their applications to differential equations. Sib. Math. J. 15, 921–934 (1974)

    Article  MATH  Google Scholar 

  117. E. Mues, Über eine Defekt- und Verzweigungsrelation für die Ableitung meromorpher Funktionen. Manuscripta Math. 5, 275–297 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  118. E. Mues, Zur Faktorisierung elliptischer Funktionen. Math. Z. 120, 157–164 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  119. E. Mues, Über ein Problem von Hayman. Math. Z. 164, 239–259 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  120. E. Mues, Meromorphic functions sharing four values. Complex Variables 12, 169–179 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  121. E. Mues, R. Redheffer, On the growth of logarithmic derivatives. J. Lond. Math. Soc. 8, 412–425 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  122. E. Mues, N. Steinmetz, The theorem of Tumura–Clunie for meromorphic functions. J. Lond. Math. Soc. 23, 113–122 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  123. T. Muir, A Treatise on the Theory of Determinants (Dover, New York, 1960)

    Google Scholar 

  124. R. Nevanlinna, Zur Theorie der meromorphen Funktionen. Acta. Math. 46, 1–99 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  125. R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen. Acta. Math. 48, 367–391 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  126. R. Nevanlinna, Le théorème de Picard–Borel et la théorie des fonctions méromorphes (Gauthier-Villars, Paris, 1929)

    MATH  Google Scholar 

  127. R. Nevanlinna, Über Riemannsche Flächen mit endlich vielen Windungspunkten. Acta. Math. 58, 295–273 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  128. R. Nevanlinna, Eindeutige Analytische Funktionen (Springer, Berlin, 1936)

    Book  MATH  Google Scholar 

  129. V. Ngoan, I.V. Ostrovskii, The logarithmic derivative of a meromorphic function (Russian). Akad. Nauk. Armjan. SSR Dokl. 41, 742–745 (1965)

    Google Scholar 

  130. K. Noshiro, Contributions to the theory of meromorphic functions in the unit-circle. J. Fac. Sci. Hokkaido Univ. 7, 149–159 (1938)

    MATH  Google Scholar 

  131. K. Okamoto, On the τ-function of the Painlevé equations. Physica D 2, 525–535 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  132. K. Okamoto, K. Takano, The proof of the Painlevé property by Masuo Hukuhara. Funkcial. Ekvac. 44, 201–217 (2001)

    MathSciNet  MATH  Google Scholar 

  133. C.F. Osgood, Sometimes effective Thue–Siegel–Roth–Schmidt–Nevanlinna bounds, or better. J. Number Theory 21, 347–389 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  134. P. Painlevé, Lecons sur la théorie analytique des équations différentielles, profesées à Stockholm (Paris, 1897)

    MATH  Google Scholar 

  135. P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme. Bull. Soc. Math. Fr. 28, 201–261 (1900)

    Article  MathSciNet  MATH  Google Scholar 

  136. X. Pang, Bloch’s principle and normal criterion. Sci. China Ser. A 32, 782–791 (1989)

    MathSciNet  MATH  Google Scholar 

  137. X. Pang, On normal criterion of meromorphic functions. Sci. China Ser. A 33, 521–527 (1990)

    MathSciNet  MATH  Google Scholar 

  138. X. Pang, Y. Ye, On the zeros of a differential polynomial and normal families. J. Math. Anal. Appl. 205, 32–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  139. X. Pang, L. Zalcman, On theorems of Hayman and Clunie. N. Z. J. Math. 28, 71–75 (1999)

    MathSciNet  MATH  Google Scholar 

  140. G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis I, II (Springer, Berlin, 1970/1971)

    Google Scholar 

  141. Ch. Pommerenke, Estimates for normal meromorphic functions. Ann. Acad. Sci. Fenn. Ser. A I 476, 10 p. (1970)

    Google Scholar 

  142. M. Reinders, Eindeutigkeitssätze für meromorphe Funktionen, die vier Werte teilen. Mitt. Math. Sem. Giessen 200, 15–38 (1991)

    MathSciNet  MATH  Google Scholar 

  143. M. Reinders, A new example of meromorphic functions sharing four values and a uniqueness theorem. Complex Variables 18, 213–221 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  144. M. Reinders, A new characterisation of Gundersen’s example of two meromorphic functions sharing four values. Results Math. 24, 174–179 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  145. A. Ros, The Gauss map of minimal surfaces, in Differential Geometry, Valencia 2001 (World Scientific Publishing Co., River Edge, NJ, 2002), pp. 235–252

    Book  MATH  Google Scholar 

  146. L.A. Rubel, Entire and Meromorphic Functions. Springer Universitext (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  147. E. Rudolph, Über meromorphe Funktionen, die vier Werte teilen, Diploma Thesis, Karlsruhe (1988)

    Google Scholar 

  148. J. Schiff, Normal Families. Springer Universitext (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  149. H. Selberg, Über die Wertverteilung der algebroiden Funktionen. Math. Z. 31, 709–728 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  150. T. Shimizu, On the theory of meromorphic functions. Jpn. J. Math. 6, 119–171 (1929)

    MATH  Google Scholar 

  151. S. Shimomura, Painlevé property of a degenerate Garnier system of (9∕2)-type and of a certain fourth order non-linear ordinary differential equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXIX, 1–17 (2000)

    Google Scholar 

  152. S. Shimomura, Proofs of the Painlevé property for all Painlevé equations. Jpn. J. Math. 29, 159–180 (2003)

    MATH  Google Scholar 

  153. S. Shimomura, Growth of the first, the second and the fourth Painlevé transcendents. Math. Proc. Camb. Phil. Soc. 134, 259–269 (2003)

    Article  MATH  Google Scholar 

  154. S. Shimomura, Poles and α-points of meromorphic solutions of the first Painlevé hierarchy. Publ. RIMS Kyoto Univ. 40, 471–485 (2004)

    Article  MATH  Google Scholar 

  155. S. Shimomura, Lower estimates for the growth of the fourth and the second Painlevé transcendents. Proc. Edinb. Math. Soc. 47, 231–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  156. K. Shin, New polynomials P for which f + P(z)f = 0 has a solution with almost all real zeros. Ann. Acad. Sci. Fenn. 27, 491–498 (2002)

    MathSciNet  MATH  Google Scholar 

  157. G.D. Song, J.M. Chang, Meromorphic functions sharing four values. Southeast Asian Bull. Math. 26, 629–635 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  158. L. Sons, Deficiencies of monomials. Math. Z. 111, 53–68 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  159. R. Spigler, The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98, 130–147 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  160. N. Steinmetz, Zur Theorie der binomischen Differentialgleichungen. Math. Ann. 244, 263–274 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  161. N. Steinmetz, Ein Malmqistscher Satz für algebraische Differentialgleichungen erster Ordnung. J. Reine Angew. Math. 316, 44–53 (1980)

    MathSciNet  MATH  Google Scholar 

  162. N. Steinmetz, Über die Nullstellen von Differentialpolynomen. Math. Z. 176, 255–264 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  163. N. Steinmetz, Über eine Klasse von Painlevéschen Differentialgleichungen. Arch. Math. 41, 261–266 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  164. N. Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes. J. Reine Angew. Math. 368, 134–141 (1986)

    MathSciNet  MATH  Google Scholar 

  165. N. Steinmetz, Ein Malmquistscher Satz für algebraische Differentialgleichungen zweiter Ordnung. Results Math. 10, 152–166 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  166. N. Steinmetz, On the zeros of \((f^{(p)} + a_{p-1}f^{(p-1)} + \cdots + a_{0}f)f\). Analysis 7, 375–389 (1987)

    Google Scholar 

  167. N. Steinmetz, Meromorphe Lösungen der Differentialgleichung \(Q(z,w)\frac{d^{2}w} {dz^{2}} = P(z,w)\big(\frac{dw} {dz} \big)^{2}\). Complex Variables 10, 31–41 (1988)

    Google Scholar 

  168. N. Steinmetz, A uniqueness theorem for three meromorphic functions. Ann. Acad. Sci. Fenn. 13, 93–110 (1988)

    MathSciNet  MATH  Google Scholar 

  169. N. Steinmetz, On the zeros of a certain Wronskian. Bull. Lond. Math. Soc. 20, 525–531 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  170. N. Steinmetz, Meromorphic solutions of second order algebraic differential equations. Complex Variables 13, 75–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  171. N. Steinmetz, Exceptional values of solutions of linear differential equations. Math. Z. 201, 317–326 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  172. N. Steinmetz, Linear differential equations with exceptional fundamental sets. Analysis 11, 119–128 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  173. N. Steinmetz, Linear differential equations with exceptional fundamental sets II. Proc. Am. Math. Soc. 117, 355–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  174. N. Steinmetz, Iteration of Rational Functions. Complex Analytic Dynamical Systems. De Gruyter Studies in Mathematics, vol. 16 (Walter de Gruyter, Berlin, 1993)

    Google Scholar 

  175. N. Steinmetz, On Painlevé’s equations I, II and IV. J. d’Anal. Math. 82, 363–377 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  176. N. Steinmetz, Value distribution of the Painlevé transcendents. Isr. J. Math. 128, 29–52 (2002)

    Article  MATH  Google Scholar 

  177. N. Steinmetz, Zalcman functions and rational dynamics. N. Z. J. Math. 32, 1–14 (2003)

    MathSciNet  MATH  Google Scholar 

  178. N. Steinmetz, Normal families and linear differential equations. J. d’Anal. Math. 117, 129–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  179. N. Steinmetz, The Yosida class is universal. J. d’Anal. Math. 117, 347–364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  180. N. Steinmetz, Sub-normal solutions to Painlevé’s second differential equation. Bull. Lond. Math. Soc. 45, 225–235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  181. N. Steinmetz, Reminiscence of an open problem. Remarks on Nevanlinna’s four-points theorem. South East Asian Bull. Math 36, 399–417 (2012)

    MATH  Google Scholar 

  182. N. Steinmetz, Complex Riccati differential equations revisited. Ann. Acad. Sci. Fenn. 39, 503–511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  183. N. Steinmetz, Remark on meromorphic functions sharing five pairs. Analysis 36, 169–179 (2016)

    MathSciNet  MATH  Google Scholar 

  184. N. Steinmetz, An old new class of meromorphic functions. J. d’Anal. Math. (2014, to appear). Preprint

    Google Scholar 

  185. N. Steinmetz, First order algebraic differential equations of genus zero. Bull. Lond. math. Soc. 49, 391–404 (2017). doi:10.1112/blms.12035

    Article  Google Scholar 

  186. N. Steinmetz, A unified approach to the Painlevé transcendents. Ann. Acad. Sci. Fenn. 42, 17–49 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  187. W. Sternberg, Über die asymptotische Integration von Differentialgleichungen. Math. Ann. 81, 119–186 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  188. E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I, 2nd edn. (Oxford University Press, London, 1962)

    MATH  Google Scholar 

  189. M. Tsuji, On the order of a meromorphic function. Tôhoku Math. J. 3, 282–284 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  190. H. Ueda, Some estimates for meromorphic functions sharing four values. Kodai Math. J. 17, 329–340 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  191. G. Valiron, Sur le théorème de M. Picard. Enseignment 28, 55–59 (1929)

    MATH  Google Scholar 

  192. G. Valiron, Sur la dérivée des fonctions algebroides. Bull. Soc. Math. Fr. 59, 17–39 (1931)

    Article  MATH  Google Scholar 

  193. G. Valiron, Lectures on the General Theory of Integral Functions (Chelsea Publishing, New York, 1949)

    Google Scholar 

  194. S.P. Wang, On meromorphic functions that share four values. J. Math. Anal. Appl. 173, 359–369 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  195. Y. Wang, On Mues conjecture and Picard values. Sci. China Ser. A 36, 28–35 (1993)

    MathSciNet  MATH  Google Scholar 

  196. J.P. Wang, Meromorphic functions sharing four values. Indian J. Pure Appl. Math. 32, 37–46 (2001)

    MathSciNet  MATH  Google Scholar 

  197. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations (Wiley, New York, 1965)

    MATH  Google Scholar 

  198. G. Weissenborn, The theorem of Tumura and Clunie. Bull. Lond. Math. Soc. 18, 371–373 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  199. J.M. Whittaker, The order of the derivative of a meromorphic function. Proc. Lond. Math. Soc. 40, 255–272 (1936)

    Article  MATH  Google Scholar 

  200. A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem größten Gliede der zugehörigen Taylorschen Reihe. Acta Math. 37, 305–326 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  201. H. Wittich, Eindeutige Lösungen der Differentialgleichungen w = P(z, w). Math. Ann. 125, 355–365 (1953)

    Google Scholar 

  202. H. Wittich, Neuere Untersuchungen über eindeutige Analytische Funktionen (Springer, Berlin, 1968)

    Book  MATH  Google Scholar 

  203. K. Yamanoi, The second main theorem for small functions and related problems. Acta Math. 192, 225–294 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  204. K. Yamanoi, Defect relation for rational functions as targets. Forum Math. 17, 169–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  205. K. Yamanoi, Zeros of higher derivatives of meromorphic functions in the complex plane. Proc. Lond. Math. Soc. 106, 703–780 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  206. S. Yamashita, On K. Yosida’s class (A) of meromorphic functions. Proc. Jpn. Acad. 50, 347–378 (1974)

    Google Scholar 

  207. N. Yanagihara, Meromorphic solutions of some difference equations. Funkc. Ekvac. 23, 309–326 (1980)

    MathSciNet  MATH  Google Scholar 

  208. K. Yosida, A generalisation of a Malmquist’s theorem. Jpn J. Math. 9, 253–256 (1932)

    MATH  Google Scholar 

  209. K. Yosida, On algebroid solutions of ordinary differential equations. Jpn. J. Math. 10, 253–256 (1933)

    MATH  Google Scholar 

  210. K. Yosida, On a class of meromorphic functions. Proc. Phys. Math. Soc. Jpn. 16, 227–235 (1934)

    MATH  Google Scholar 

  211. K. Yosida, A note on Malmquist’s theorem on first order algebraic differential equations. Proc. Jpn. Acad. 53, 120–123 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  212. L. Zalcman, A heuristic principle in function theory. Am. Math. Monthly 82, 813–817 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  213. L. Zalcman, Normal families: new perspectives. Bull. Am. Math. Soc. 35, 215–230 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Steinmetz, N. (2017). Algebraic Differential Equations. In: Nevanlinna Theory, Normal Families, and Algebraic Differential Equations. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-59800-0_5

Download citation

Publish with us

Policies and ethics