Skip to main content

The Molecular Basis of Histone Methylation

  • Chapter
  • First Online:
  • 1258 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

As an integrated part of the complex array of post-translational modifications on histone, methylation mainly occurs on histone lysine and arginine residues and plays pivotal roles in the regulation of chromatin organization and function. Histone methylation is catalyzed by different groups of methyltransferases while methylation marks on different residues as well as different methylation states on the same residue serve as docking sites to recruit a variety of binding proteins harboring specific recognition domains. These methyl-histone binding proteins further recruit additional chromatin modifiers and other proteins to transduce methylation signals into diverse functional outcomes. Here we summarize histone methyltransferases and discuss their specificities and regulations for different methylation reactions. We also discuss specific methyl-histone recognition by different families of binding proteins at multiple molecular layers. Given that the disruption of histone methylation and recognition has been associated with altered gene function in various diseases and human malignancy, understanding the regulation of histone methylation and recognition will also provide molecular basics for therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2:a000596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  3. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  CAS  PubMed  Google Scholar 

  6. Strahl BD, Ohba R, Cook RG, Allis CD (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci U S A 96:14967–14972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bedford MT (2007) Arginine methylation at a glance. J Cell Sci 120:4243–4246

    Article  CAS  PubMed  Google Scholar 

  8. Guccione E et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937

    Article  CAS  PubMed  Google Scholar 

  9. Hyllus D et al (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21:3369–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iberg AN et al (2008) Arginine methylation of the histone H3 tail impedes effector binding. J Biol Chem 283:3006–3010

    Article  CAS  PubMed  Google Scholar 

  11. Schurter BT et al (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40:5747–5756

    Article  CAS  PubMed  Google Scholar 

  12. Migliori V et al (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19:136–144

    Article  CAS  PubMed  Google Scholar 

  13. Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W (2003) Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 17:896–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee JH, Tate CM, You JS, Skalnik DG (2007) Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J Biol Chem 282:13419–13428

    Article  CAS  PubMed  Google Scholar 

  15. Wang H et al (2001) Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 8:1207–1217

    Article  CAS  PubMed  Google Scholar 

  16. Lee SH et al (2005) The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci U S A 102:18075–18080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blazer LL et al (2016) PR domain-containing protein 7 (PRDM7) is a histone 3 lysine 4 trimethyltransferase. J Biol Chem 291:13509–13519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Powers NR et al (2016) The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet 12:e1006146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hayashi K, Yoshida K, Matsui Y (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378

    Article  CAS  PubMed  Google Scholar 

  20. Tan X, Rotllant J, Li H, De Deyne P, Du SJ (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103:2713–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamamoto R et al (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740

    Article  CAS  PubMed  Google Scholar 

  22. Van Aller GS et al (2012) Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7:340–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS (2010) Beta-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24:9630–9645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rea S et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    Article  CAS  PubMed  Google Scholar 

  26. O'Carroll D et al (2000) Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 20:9423–9433

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296:1132–1136

    Article  CAS  PubMed  Google Scholar 

  28. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y (2001) Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276:25309–25317

    Google Scholar 

  29. Yang L et al (2002) Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21:148–152

    Google Scholar 

  30. Falandry C et al (2010) CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J Biol Chem 285:20234–20241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim KC, Geng L, Huang S (2003) Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res 63:7619–7623

    CAS  PubMed  Google Scholar 

  32. Pinheiro I et al (2012) Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150:948–960

    Article  CAS  PubMed  Google Scholar 

  33. Eom GH et al (2009) Histone methyltransferase PRDM8 regulates mouse testis steroidogenesis. Biochem Biophys Res Commun 388:131–136

    Article  CAS  PubMed  Google Scholar 

  34. Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu H et al (2011) Histone methyltransferase G9a contributes to H3K27 methylation in vivo. Cell Res 21:365–367

    Article  CAS  PubMed  Google Scholar 

  36. Qiao Q et al (2011) The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem 286:8361–8368

    Article  CAS  PubMed  Google Scholar 

  37. Kuo AJ et al (2011) NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44:609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asangani IA et al (2012) Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol Cell 49:80–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li Y et al (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284:34283–34295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sun XJ et al (2005) Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280:35261–35271

    Article  CAS  PubMed  Google Scholar 

  42. Kim DW, Kim KB, Kim JY, Seo SB (2011) Characterization of a novel histone H3K36 methyltransferase setd3 in zebrafish. Biosci Biotechnol Biochem 75:289–294

    Article  CAS  PubMed  Google Scholar 

  43. Eom GH et al (2011) Histone methyltransferase SETD3 regulates muscle differentiation. J Biol Chem 286:34733–34742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. An S, Yeo KJ, Jeon YH, Song JJ (2011) Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J Biol Chem 286:8369–8374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanaka Y, Katagiri Z, Kawahashi K, Kioussis D, Kitajima S (2007) Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 397:161–168

    Article  CAS  PubMed  Google Scholar 

  46. Eram MS et al (2014) Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein. J Biol Chem 289:12177–12188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu Y et al (2012) Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol Cell 46:7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Casadio F et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci U S A 110:14894–14899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng Q et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058

    Article  CAS  PubMed  Google Scholar 

  50. Ng HH et al (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16:1518–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang H et al (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293:853–857

    Article  CAS  PubMed  Google Scholar 

  52. Karkhanis V et al (2012) Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase delta catalytic subunit gene, POLD1. J Biol Chem 287:29801–29814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tweedie-Cullen RY et al (2012) Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 7:e36980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng Y et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288:37010–37025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schotta G et al (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fang J et al (2002) Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol 12:1086–1099

    Article  CAS  PubMed  Google Scholar 

  57. Nishioka K et al (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9:1201–1213

    Article  CAS  PubMed  Google Scholar 

  58. Foreman KW et al (2011) Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One 6:e22290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ancelin K et al (2006) Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630

    Article  CAS  PubMed  Google Scholar 

  60. Waldmann T et al (2011) Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin 4:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Binda O et al (2013) SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics 8:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kogure M et al (2013) The oncogenic polycomb histone methyltransferase EZH2 methylates lysine 120 on histone H2B and competes ubiquitination. Neoplasia 15:1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14:183–193

    Article  CAS  PubMed  Google Scholar 

  64. Weiss T et al (2010) Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 3:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Polevoda B, Sherman F (2007) Methylation of proteins involved in translation. Mol Microbiol 65:590–606

    Article  CAS  PubMed  Google Scholar 

  66. Tessarz P et al (2014) Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505:564–568

    Article  CAS  PubMed  Google Scholar 

  67. Jenuwein T, Laible G, Dorn R, Reuter G (1998) SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci 54:80–93

    Article  CAS  PubMed  Google Scholar 

  68. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Y et al (2016) Structural basis for activity regulation of MLL family methyltransferases. Nature 530:447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350:aac4383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16:1406–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiao B et al (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421:652–656

    Article  CAS  PubMed  Google Scholar 

  73. Couture JF, Collazo E, Brunzelle JS, Trievel RC (2005) Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev 19:1455–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sawada K et al (2004) Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. J Biol Chem 279:43296–43306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112:711–723

    Article  CAS  PubMed  Google Scholar 

  76. Chen X, Liu H, Shim AH, Focia PJ, He X (2008) Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Nat Struct Mol Biol 15:50–56

    Article  CAS  PubMed  Google Scholar 

  77. Cao F et al (2010) An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS One 5:e14102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Patel A, Vought VE, Dharmarajan V, Cosgrove MS (2011) A novel non-SET domain multi-subunit methyltransferase required for sequential nucleosomal histone H3 methylation by the mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem 286:3359–3369

    Article  CAS  PubMed  Google Scholar 

  79. Xiao B, Wilson JR, Gamblin SJ (2003) SET domains and histone methylation. Curr Opin Struct Biol 13:699–705

    Article  CAS  PubMed  Google Scholar 

  80. Wu H et al (2010) Structural biology of human H3K9 methyltransferases. PLoS One 5:e8570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhang X et al (2002) Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu H et al (2013) Molecular basis for the regulation of the H3K4 methyltransferase activity of PRDM9. Cell Rep 5:13–20

    Article  CAS  PubMed  Google Scholar 

  83. Southall SM, Cronin NB, Wilson JR (2014) A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic Acids Res 42:661–671

    Article  CAS  PubMed  Google Scholar 

  84. Zhang X et al (2003) Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 12:177–185

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Southall SM, Wong PS, Odho Z, Roe SM, Wilson JR (2009) Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell 33:181–191

    Article  CAS  PubMed  Google Scholar 

  87. Wu H et al (2013) Crystal structures of the human histone H4K20 methyltransferases SUV420H1 and SUV420H2. FEBS Lett 587:3859–3868

    Article  CAS  PubMed  Google Scholar 

  88. Xu S, Zhong C, Zhang T, Ding J (2011) Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. J Mol Cell Biol 3:293–300

    Article  CAS  PubMed  Google Scholar 

  89. Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25:1345–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gui S et al (2014) A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine. J Biol Chem 289:9320–9327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115:5413–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang X, Zhou L, Cheng X (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19:3509–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Debler EW et al (2016) A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Proc Natl Acad Sci U S A 113:2068–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun L et al (2011) Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc Natl Acad Sci U S A 108:20538–20543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16:2893–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cao R et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298:1039–1043

    Article  CAS  PubMed  Google Scholar 

  97. Sun L, Fang J (2016) E3-independent constitutive monoubiquitination complements histone methyltransferase activity of SETDB1. Mol Cell 62:958–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu H et al (2013) Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS One 8:e83737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Antonysamy S et al (2013) Structural context of disease-associated mutations and putative mechanism of autoinhibition revealed by X-ray crystallographic analysis of the EZH2-SET domain. PLoS One 8:e84147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lacroix M et al (2008) The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep 9:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abu-Farha M et al (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7:560–572

    Article  CAS  PubMed  Google Scholar 

  102. Cao R et al (2008) Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol Cell Biol 28:1862–1872

    Article  CAS  PubMed  Google Scholar 

  103. Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D (2008) Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol 28:2718–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang H et al (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12:475–487

    Article  CAS  PubMed  Google Scholar 

  105. Basavapathruni A et al (2016) Characterization of the enzymatic activity of SETDB1 and its 1:1 complex with ATF7IP. Biochemistry 55:1645–1651

    Article  CAS  PubMed  Google Scholar 

  106. Cha TL et al (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310

    Article  CAS  PubMed  Google Scholar 

  107. Kim E et al (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23:839–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang D et al (2013) Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proc Natl Acad Sci U S A 110:5516–5521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vaquero A et al (2007) SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450:440–444

    Article  CAS  PubMed  Google Scholar 

  110. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16:919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Duan Q, Chen H, Costa M, Dai W (2008) Phosphorylation of H3S10 blocks the access of H3K9 by specific antibodies and histone methyltransferase. Implication in regulating chromatin dynamics and epigenetic inheritance during mitosis. J Biol Chem 283:33585–33590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu L et al (2013) ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell 49:1108–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Whitcomb SJ et al (2012) Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2. J Biol Chem 287:23718–23725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu N et al (2015) Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 29:379–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Margueron R et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu C et al (2010) Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci U S A 107:19266–19271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Muller MM, Fierz B, Bittova L, Liszczak G, Muir TW (2016) A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat Chem Biol 12:188–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15:703–708

    Article  CAS  PubMed  Google Scholar 

  120. Lu X et al (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu J, Cui N, Wang R, Li J, Wong J (2012) A role for CARM1-mediated histone H3 arginine methylation in protecting histone acetylation by releasing corepressors from chromatin. PLoS One 7:e34692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nishioka K et al (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  CAS  PubMed  Google Scholar 

  124. Vezzoli A et al (2010) Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol 17:617–619

    Article  CAS  PubMed  Google Scholar 

  125. Kokura K, Sun L, Bedford MT, Fang J (2010) Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J 29:3673–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wen H et al (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508:263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bernstein E et al (2006) Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26:2560–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dhayalan A et al (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285:26114–26120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhao Q et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi X et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Klymenko T et al (2006) A polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20:1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim S et al (2016) Mechanism of histone H3K4me3 recognition by the plant homeodomain of inhibitor of growth 3. J Biol Chem 291:18326–18341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hung T et al (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Champagne KS et al (2008) The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 72:1371–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Musselman CA et al (2009) Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem J 423:179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chang PY et al (2010) Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 400:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sims RJ 3rd et al (2005) Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 280:41789–41792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Karagianni P, Amazit L, Qin J, Wong J (2008) ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol 28:705–717

    Article  CAS  PubMed  Google Scholar 

  139. Fischle W, Franz H, Jacobs SA, Allis CD, Khorasanizadeh S (2008) Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs. J Biol Chem 283:19626–19635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang GG et al (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459:847–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sun Y et al (2009) Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol 11:1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Iwase S et al (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128:1077–1088

    Article  CAS  PubMed  Google Scholar 

  143. Zhang P et al (2006) Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3. Nucleic Acids Res 34:6621–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wen H et al (2010) Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation. J Biol Chem 285:9322–9326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Moore SA, Ferhatoglu Y, Jia Y, Al-Jiab RA, Scott MJ (2010) Structural and biochemical studies on the chromo-barrel domain of male specific lethal 3 (MSL3) reveal a binding preference for mono- or dimethyllysine 20 on histone H4. J Biol Chem 285:40879–40890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim D et al (2010) Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain. Nat Struct Mol Biol 17:1027–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I (2010) PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17:445–450

    Article  CAS  PubMed  Google Scholar 

  148. Vermeulen M et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69

    Article  CAS  PubMed  Google Scholar 

  149. Botuyan MV et al (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127:1361–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li H et al (2006) Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wysocka J et al (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90

    CAS  PubMed  Google Scholar 

  152. Nady N et al (2011) Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem 286:24300–24311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S (2007) A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27:561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Musselman CA et al (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19:1266–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fiedler M et al (2008) Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol Cell 30:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312:748–751

    Article  CAS  PubMed  Google Scholar 

  157. Lee J, Thompson JR, Botuyan MV, Mer G (2008) Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Nat Struct Mol Biol 15:109–111

    Article  CAS  PubMed  Google Scholar 

  158. Brien GL et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19:1273–1281

    Article  CAS  PubMed  Google Scholar 

  159. Ballare C et al (2012) Phf19 links methylated Lys36 of histone H3 to regulation of polycomb activity. Nat Struct Mol Biol 19:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Collins RE et al (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Badeaux AI et al (2012) Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem 287:429–437

    Article  CAS  PubMed  Google Scholar 

  162. Hirano Y et al (2012) Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation. J Biol Chem 287:42654–42663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. He F et al (2010) Structural insight into the zinc finger CW domain as a histone modification reader. Structure 18:1127–1139

    Article  CAS  PubMed  Google Scholar 

  164. Liu Y et al (2016) Family-wide characterization of histone binding abilities of human CW domain-containing proteins. J Biol Chem 291:9000–9013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bian C et al (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30:2829–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yang Y et al (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang W et al (2011) Nucleolar protein Spindlin1 recognizes H3K4 methylation and stimulates the expression of rRNA genes. EMBO Rep 12:1160–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kuo AJ et al (2012) The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 484:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhao D et al (2016) The BAH domain of BAHD1 is a histone H3K27me3 reader. Protein Cell 7:222–226

    Article  PubMed  PubMed Central  Google Scholar 

  170. Trojer P et al (2007) L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129:915–928

    Article  CAS  PubMed  Google Scholar 

  171. Guo Y et al (2009) Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res 37:2204–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jacquet K et al (2016) The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell 62:409–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Maurer-Stroh S et al (2003) The Tudor domain ‘Royal Family’: Tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem Sci 28:69–74

    Article  CAS  PubMed  Google Scholar 

  174. Yap KL, Zhou MM (2010) Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 45:488–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yap KL, Zhou MM (2011) Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 50:1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nielsen PR et al (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107

    Article  CAS  PubMed  Google Scholar 

  177. Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080–2083

    Article  CAS  PubMed  Google Scholar 

  178. Chang Y, Horton JR, Bedford MT, Zhang X, Cheng X (2011) Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding. J Mol Biol 408:807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li J et al (2011) Structural basis for specific binding of human MPP8 chromodomain to histone H3 methylated at lysine 9. PLoS One 6:e25104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fischle W et al (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17:1823–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433:434–438

    Article  CAS  PubMed  Google Scholar 

  183. Flanagan JF et al (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438:1181–1185

    Article  CAS  PubMed  Google Scholar 

  184. Kamps JJ et al (2015) Chemical basis for the recognition of trimethyllysine by epigenetic reader proteins. Nat Commun 6:8911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nady N et al (2012) Histone recognition by human malignant brain tumor domains. J Mol Biol 423:702–718

    Article  CAS  PubMed  Google Scholar 

  186. Li H et al (2007) Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Mol Cell 28:677–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Min J et al (2007) L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14:1229–1230

    Article  CAS  PubMed  Google Scholar 

  188. Qin S, Min J (2014) Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 39:536–547

    Article  CAS  PubMed  Google Scholar 

  189. Wang Y et al (2009) Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol Cell 33:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Baubec T et al (2015) Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520:243–247

    Article  CAS  PubMed  Google Scholar 

  191. Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36:364–372

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Pena PV et al (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442:100–103

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Wysocka J et al (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–872

    Article  CAS  PubMed  Google Scholar 

  194. Gayatri S, Bedford MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839:702–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Liu K et al (2010) Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc Natl Acad Sci U S A 107:18398–18403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sikorsky T et al (2012) Recognition of asymmetrically dimethylated arginine by TDRD3. Nucleic Acids Res 40:11748–11755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nair SS et al (2010) PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep 11:438–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mann M, Cortez V, Vadlamudi R (2013) PELP1 oncogenic functions involve CARM1 regulation. Carcinogenesis 34:1468–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180

    Article  CAS  PubMed  Google Scholar 

  200. Fischle W et al (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    Article  CAS  PubMed  Google Scholar 

  201. Yuan CC et al (2012) Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes. Cell Rep 1:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yang L et al (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147:773–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the National Cancer Institute (R01CA172774) to Jia Fang. This work was also supported in part by Core Facilities at the H. Lee Moffitt Cancer Center & Research Institute, an NCI designated Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sun, L., Fang, J. (2017). The Molecular Basis of Histone Methylation. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics