Skip to main content

Misregulation of DNA Methylation Regulators in Cancer

  • Chapter
  • First Online:
DNA and Histone Methylation as Cancer Targets

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Epigenetic modifications at the DNA level play a central role in establishing the chromatin state and thereby influencing biological function. Several disorders arise from aberrant epigenetic patterns on DNA, cancer being widely explored as an epigenetic disorder. In fact several cancers are associated with a hypermethylator phenotype, which essentially functions as a ‘driver’ of tumorigenesis. Aberrant DNA methylation patterns arise from disrupting the ‘writers’ or ‘erasers’ of the DNA methylation pathway, coordinately functioning to regulate DNA epigenetic marks. Cancer associated deregulatory mechanisms targeting functional disruption of the molecular components of the DNA methylation pathway, and their contribution to cancer initiation and progression are being increasingly appreciated. Understanding these mechanisms of deregulation is central to identifying new targets for therapeutic intervention, in both cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute Myeloid Leukemia

CGI:

CpG island

CIMP:

CpG hypermethylator phenotype

DNMT:

DNA methyltransferase

EBF1:

Early B-Cell Factor 1

EMT:

Epithelial to mesenchymal transition

FH:

Fumarate hydratase (fumarase)

G-CIMP:

Glioma specific CIMP

GSC:

Glioblastoma Stem Cells

HIF:

Hypoxia inducible factor

HPC:

Hematopoietic presursor cells

HRE:

Hypoxia response element

HSC:

Hematopoietic stem cells

IDAX:

Inhibition of the Dvl and Axin Complex

IDH:

Isocitrate dehydrogenase

MBD:

Methyl binding domain

mCG:

CpG methylation

mCH:

Non-CpG methylation

MDS:

Myelodysplastic Syndromes

MLL:

Mixed-lineage leukemia

MPN:

Myeloproliferative Neoplasm

MTase:

Methyltransferase

PCNA:

Proliferating cell nuclear antigen

SDH:

Succinate dehydrogenase

TDG:

Thymine-DNA glycosylase

TET:

Ten-eleven translocation

UHRF:

Ubiquitin-Like with PHD and Ring Finger Domains

α-KG:

Alpha-ketoglutarate

References

  1. Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  2. Bai S et al (2005) DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol Cell Biol 25(2):751–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Challen GA et al (2012) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31

    Article  CAS  Google Scholar 

  4. Challen GA et al (2014) Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15(3):350–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leonhardt H et al (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71(5):865–873

    Article  CAS  PubMed  Google Scholar 

  6. Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 12(7):647–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Robertson KD et al (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27(11):2291–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goyal R, Reinhardt R, Jeltsch A (2006) Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 34(4):1182–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chuang LS et al (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277(5334):1996–2000

    Article  CAS  PubMed  Google Scholar 

  10. Iida T et al (2002) PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7(10):997–1007

    Article  CAS  PubMed  Google Scholar 

  11. Bostick M et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764

    Article  CAS  PubMed  Google Scholar 

  12. Sharif J et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912

    Article  CAS  PubMed  Google Scholar 

  13. Fatemi M, Wade PA (2006) MBD family proteins: reading the epigenetic code. J Cell Sci 119(Pt 15):3033–3037

    Article  CAS  PubMed  Google Scholar 

  14. Spruijt CG, Vermeulen M (2014) DNA methylation: old dog, new tricks? Nat Struct Mol Biol 21(11):949–954

    Article  CAS  PubMed  Google Scholar 

  15. Bogdanovic O, Veenstra GJ (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118(5):549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shahbazian MD et al (2002) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11(2):115–124

    Article  CAS  PubMed  Google Scholar 

  17. Klose RJ et al (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19(5):667–678

    Article  CAS  PubMed  Google Scholar 

  18. Lee SU, Maeda T (2012) POK/ZBTB proteins: an emerging family of proteins that regulate lymphoid development and function. Immunol Rev 247(1):107–119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Prokhortchouk A et al (2001) The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 15(13):1613–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daniel JM et al (2002) The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res 30(13):2911–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blattler A et al (2013) ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenetics Chromatin 6(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu X, Zhao BS, He C (2015) TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Chem Rev 115(6):2225–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14(6):341–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dunican DS, Pennings S, Meehan RR (2013) The CXXC-TET bridge--mind the methylation gap! Cell Res 23(8):973–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tomizawa S et al (2011) Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138(5):811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lister R et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ziller MJ et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7(12):e1002389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  29. Illingworth RS, Bird AP (2009) CpG islands—‘a rough guide’. FEBS Lett 583(11):1713–1720

    Article  CAS  PubMed  Google Scholar 

  30. Jeong M et al (2014) Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet 46(1):17–23

    Article  CAS  PubMed  Google Scholar 

  31. Dion V et al (2008) Genome-wide demethylation promotes triplet repeat instability independently of homologous recombination. DNA Repair (Amst) 7(2):313–320

    Article  CAS  PubMed Central  Google Scholar 

  32. Choi SH et al (2011) Identification of preferential target sites for human DNA methyltransferases. Nucleic Acids Res 39(1):104–118

    Article  CAS  PubMed  Google Scholar 

  33. Tiedemann RL et al (2014) Acute depletion redefines the division of labor among DNA methyltransferases in methylating the human genome. Cell Rep 9(4):1554–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao J et al (2015) Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet 47(5):469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hervouet E, Vallette FM, Cartron PF (2009) Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4(7):487–499

    Article  CAS  PubMed  Google Scholar 

  36. Velasco G et al (2010) Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc Natl Acad Sci U S A 107(20):9281–9286

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839(12):1362–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gopalakrishnan S et al (2009) DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet 18(17):3178–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1(2):239–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mack SC et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506(7489):445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oey H, Whitelaw E (2014) On the meaning of the word 'epimutation'. Trends Genet 30(12):519–520

    Article  CAS  PubMed  Google Scholar 

  42. Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993

    Article  CAS  PubMed  Google Scholar 

  43. Kanai Y et al (2003) Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett 192(1):75–82

    Article  CAS  PubMed  Google Scholar 

  44. Song J et al (2011) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331(6020):1036–1040

    Article  CAS  PubMed  Google Scholar 

  45. Syeda F et al (2011) The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1. J Biol Chem 286(17):15344–15351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bashtrykov P et al (2014) Targeted mutagenesis results in an activation of DNA methyltransferase 1 and confirms an autoinhibitory role of its RFTS domain. Chembiochem 15(5):743–748

    Article  CAS  PubMed  Google Scholar 

  47. Tang M et al (2009) Potential of DNMT and its epigenetic regulation for lung cancer therapy. Curr Genomics 10(5):336–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fang QL et al (2015) Mechanistic and biological significance of DNA methyltransferase 1 upregulated by growth factors in human hepatocellular carcinoma. Int J Oncol 46(2):782–790

    Article  CAS  PubMed  Google Scholar 

  49. Mizuno S et al (2001) Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97(5):1172–1179

    Article  CAS  PubMed  Google Scholar 

  50. Yang J et al (2011) Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol Med Rep 4(6):1139–1143

    CAS  PubMed  Google Scholar 

  51. Wang H et al (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32(7):1033–1042

    Article  CAS  PubMed  Google Scholar 

  52. Agoston AT et al (2005) Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J Biol Chem 280(18):18302–18310

    Article  CAS  PubMed  Google Scholar 

  53. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136

    Article  CAS  PubMed  Google Scholar 

  54. Rouleau J, MacLeod AR, Szyf M (1995) Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J Biol Chem 270(4):1595–1601

    Article  CAS  PubMed  Google Scholar 

  55. Bakin AV, Curran T (1999) Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283(5400):387–390

    Article  CAS  PubMed  Google Scholar 

  56. Campbell PM, Szyf M (2003) Human DNA methyltransferase gene DNMT1 is regulated by the APC pathway. Carcinogenesis 24(1):17–24

    Article  CAS  PubMed  Google Scholar 

  57. Lin RK et al (2010) Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res 70(14):5807–5817

    Google Scholar 

  58. McCabe MT, Davis JN, Day ML (2005) Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res 65(9):3624–3632

    Article  CAS  PubMed  Google Scholar 

  59. Torrisani J et al (2007) AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Mol Cell Biol 27(1):395–410

    Article  CAS  PubMed  Google Scholar 

  60. Sun L et al (2007) Phosphatidylinositol 3-kinase/protein kinase B pathway stabilizes DNA methyltransferase I protein and maintains DNA methylation. Cell Signal 19(11):2255–2263

    Article  CAS  PubMed  Google Scholar 

  61. Qin W, Leonhardt H, Spada F (2011) Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J Cell Biochem 112(2):439–444

    Article  CAS  PubMed  Google Scholar 

  62. Bashtrykov P et al (2014) The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism. J Biol Chem 289(7):4106–4115

    Article  CAS  PubMed  Google Scholar 

  63. Pacaud R et al (2014) The DNMT1/PCNA/UHRF1 disruption induces tumorigenesis characterized by similar genetic and epigenetic signatures. Sci Rep 4:4230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hervouet E et al (2010) Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells. PLoS One 5(6):e11333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ley TJ et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Russler-Germain DA et al (2014) The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25(4):442–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jia D et al (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449(7159):248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jurkowska RZ et al (2008) Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a in complex with regulator Dnmt3L. Nucleic Acids Res 36(21):6656–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gowher H et al (2006) Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. J Mol Biol 357(3):928–941

    Article  CAS  PubMed  Google Scholar 

  70. Li BZ et al (2011) Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 21(8):1172–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang L, Rau R, Goodell MA (2015) DNMT3A in haematological malignancies. Nat Rev Cancer 15(3):152–165

    Article  CAS  PubMed  Google Scholar 

  72. Lin CC et al (2014) IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution. Am J Hematol 89(2):137–144

    Article  CAS  PubMed  Google Scholar 

  73. Jia Y et al (2016) Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov 2:16007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tang YA et al (2012) MDM2 overexpression deregulates the transcriptional control of RB/E2F leading to DNA methyltransferase 3A overexpression in lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 18(16):4325–4333

    Article  CAS  Google Scholar 

  75. Gao Q et al (2011) Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci U S A 108(44):18061–18066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang L et al (2004) Functional relevance of C46359T in the promoter region of human DNMT3B6. Cancer Res 64(7 Supplement):672–672

    Google Scholar 

  77. Shen H et al (2002) A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res 62(17):4992–4995

    CAS  PubMed  Google Scholar 

  78. Liu Z et al (2008) Polymorphisms of the DNMT3B gene and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Lett 268(1):158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jones JS et al (2006) DNMT3b polymorphism and hereditary nonpolyposis colorectal cancer age of onset. Cancer Epidemiol Biomark Prev 15(5):886–891

    Article  CAS  Google Scholar 

  80. Montgomery KG et al (2004) The DNMT3B C-->T promoter polymorphism and risk of breast cancer in a British population: a case-control study. Breast Cancer Res 6(4):R390–R394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu S et al (2012) DNMT3B polymorphisms and cancer risk: a meta analysis of 24 case-control studies. Mol Biol Rep 39(4):4429–4437

    Article  CAS  PubMed  Google Scholar 

  82. Xia Z et al (2015) Quantitative assessment of the association between DNMT3B-579G>T polymorphism and cancer risk. Cancer Biomark 15(5):707–716

    Article  CAS  PubMed  Google Scholar 

  83. Wang L et al (2006) A novel DNMT3B subfamily, DeltaDNMT3B, is the predominant form of DNMT3B in non-small cell lung cancer. Int J Oncol 29(1):201–207

    CAS  PubMed  Google Scholar 

  84. Wang J et al (2006) Expression of Delta DNMT3B variants and its association with promoter methylation of p16 and RASSF1A in primary non-small cell lung cancer. Cancer Res 66(17):8361–8366

    Article  CAS  PubMed  Google Scholar 

  85. Gordon CA, Hartono SR, Chedin F (2013) Inactive DNMT3B splice variants modulate de novo DNA methylation. PLoS One 8(7):e69486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ostler KR et al (2007) Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 26(38):5553–5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brambert PR et al (2015) DNMT3B7 expression promotes tumor progression to a more aggressive phenotype in breast cancer cells. PLoS One 10(1):e0117310

    Article  PubMed  PubMed Central  Google Scholar 

  88. Saito Y et al (2002) Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci U S A 99(15):10060–10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roll JD et al (2008) DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 7:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yang YC et al (2014) DNMT3B overexpression by deregulation of FOXO3a-mediated transcription repression and MDM2 overexpression in lung cancer. J Thorac Oncol 9(9):1305–1315

    Article  CAS  PubMed  Google Scholar 

  91. Suetake I et al (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279(26):27816–27823

    Article  CAS  PubMed  Google Scholar 

  92. Holz-Schietinger C, Reich NO (2010) The inherent processivity of the human de novo methyltransferase 3A (DNMT3A) is enhanced by DNMT3L. J Biol Chem 285(38):29091–29100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99(26):16916–16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Van Emburgh BO, Robertson KD (2011) Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 39(12):4984–5002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pacaud R et al (2014) DNMT3L interacts with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: role of the DNMT3L/DNMT3B/p65-NFkappaB complex in the (de-)methylation of TRAF1. Biochimie 104:36–49

    Article  CAS  PubMed  Google Scholar 

  96. Minami K et al (2010) DNMT3L is a novel marker and is essential for the growth of human embryonal carcinoma. Clin Cancer Res 16(10):2751–2759

    Article  CAS  PubMed  Google Scholar 

  97. Gokul G et al (2007) DNA methylation profile at the DNMT3L promoter: a potential biomarker for cervical cancer. Epigenetics 2(2):80–85

    Article  PubMed  Google Scholar 

  98. Manderwad GP et al (2010) Hypomethylation of the DNMT3L promoter in ocular surface squamous neoplasia. Arch Pathol Lab Med 134(8):1193–1196

    CAS  PubMed  Google Scholar 

  99. Kim H et al (2010) DNA methyltransferase 3-like affects promoter methylation of thymine DNA glycosylase independently of DNMT1 and DNMT3B in cancer cells. Int J Oncol 36(6):1563–1572

    Article  CAS  PubMed  Google Scholar 

  100. Neri F et al (2015) TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. Nucleic Acids Res 43(14):6814–6826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jin C et al (2014) TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res 42(11):6956–6971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cimmino L et al (2015) TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol 16(6):653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun M et al (2013) HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci U S A 110(24):9920–9925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Neri F et al (2015) TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene 34(32):4168–4176

    Article  CAS  PubMed  Google Scholar 

  105. Ichimura N et al (2015) Aberrant TET1 methylation closely associated with CpG island methylator phenotype in colorectal cancer. Cancer Prev Res (Phila) 8(8):702–711

    Article  CAS  Google Scholar 

  106. Hsu CH et al (2012) TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2(3):568–579

    Article  CAS  PubMed  Google Scholar 

  107. Lu HG et al (2014) TET1 partially mediates HDAC inhibitor-induced suppression of breast cancer invasion. Mol Med Rep 10(5):2595–2600

    Article  CAS  PubMed  Google Scholar 

  108. Wu BK, Brenner C (2014) Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation. Cell Rep 9(5):1827–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jankowska AM et al (2009) Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 113(25):6403–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Delhommeau F et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360(22):2289–2301

    Article  PubMed  Google Scholar 

  111. Moran-Crusio K et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20(1):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ko M et al (2011) Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A 108(35):14566–14571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao Z et al (2016) The catalytic activity of TET2 is essential for its myeloid malignancy-suppressive function in hematopoietic stem/progenitor cells. Leukemia 30(8):1784–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Busque L et al (2012) Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44(11):1179–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Muto T et al (2013) Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J Exp Med 210(12):2627–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Abdel-Wahab O et al (2013) Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med 210(12):2641–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sakata-Yanagimoto M et al (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46(2):171–175

    Article  CAS  PubMed  Google Scholar 

  118. Couronne L, Bastard C, Bernard OA (2012) TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 366(1):95–96

    Article  CAS  PubMed  Google Scholar 

  119. Wang C et al (2015) IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126(15):1741–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ko M et al (2013) Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497(7447):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Y, Zhang Y (2014) Regulation of TET protein stability by calpains. Cell Rep 6(2):278–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lakshmikuttyamma A et al (2004) Overexpression of m-calpain in human colorectal adenocarcinomas. Cancer Epidemiol Biomark Prev 13(10):1604–1609

    CAS  Google Scholar 

  123. Wang Y et al (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 57(4):662–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Cui Q et al (2016) Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun 7:10637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ye Z et al (2016) TET3 inhibits TGF-beta1-induced epithelial-mesenchymal transition by demethylating miR-30d precursor gene in ovarian cancer cells. J Exp Clin Cancer Res 35(1):72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27(4):599–608

    Article  CAS  PubMed  Google Scholar 

  127. Losman JA, Kaelin WG Jr (2013) What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27(8):836–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Duncan CG et al (2012) A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 22(12):2339–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Turcan S et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Flavahan WA et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114

    Article  CAS  PubMed  Google Scholar 

  131. Guilhamon P et al (2013) Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat Commun 4:2166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Fukasawa M et al (2004) Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. J Biochem 136(3):273–277

    Article  CAS  PubMed  Google Scholar 

  133. Mariani CJ et al (2014) TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep 7(5):1343–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tsai YP et al (2014) TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol 15(12):513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wu MZ et al (2015) Hypoxia drives breast tumor malignancy through a TET-TNFalpha-p38-MAPK signaling axis. Cancer Res 75(18):3912–3924

    Article  CAS  PubMed  Google Scholar 

  136. Skowronski K et al (2010) Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells. Epigenetics 5(6):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hoekstra AS et al (2015) Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget 6(36):38777–38788

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking altered metabolism with cancer. J Clin Invest 123(9):3652–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Laukka T et al (2016) Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J Biol Chem 291(8):4256–4265

    Article  CAS  PubMed  Google Scholar 

  140. Letouze E et al (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23(6):739–752

    Article  CAS  PubMed  Google Scholar 

  141. MacKenzie ED et al (2007) Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27(9):3282–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith D. Robertson .

Editor information

Editors and Affiliations

Glossary

CpG site

Linear sequence of DNA where a cytosine is followed by guanine in the 5' to 3' direction.

CpG methylation (mCG)

Cytosine within a CpG site, methylated by the DNMTs at the C5 position, represented as mCG.

Non CpG methylation (mCH)

Methylation occurring outside of CpG sites, where H could be adenine, cytosine or thymine.

CpG Islands (CGI)

Short interspersed sequence of DNA, around 200 base-pairs long, with high CpG fequency, and GC content greater than 50%.

CpG shores and shelves

2 kb on either side of CpG islands are termed CpG shores, and 2 kb on either side of the CGI shores are termed CGI shelves.

CpG Canyons

Regions of low methylation, distinct from CGIs, and frequently associated with transcription factor binding sites.

Epimutations

Non-genetic, heritable, aberrant lesions in the expression of a gene, arising from epigenetic DNA modifications or other epigenetic modifications on local chromatin.

CpG hypermethylator phenotype (CIMP)

Hypermethylated CpG islands forming a diagnostic/prognostic tumor specific DNA methylation signature.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thompson, J.J., Robertson, K.D. (2017). Misregulation of DNA Methylation Regulators in Cancer. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics