Skip to main content

The Molecular Basis of DNA Demethylation

  • Chapter
  • First Online:
DNA and Histone Methylation as Cancer Targets

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

DNA methylation is a key epigenetic modification in mammalian genomes and is dynamically regulated in development and diseases. While enzymes catalyzing DNA methylation have been well characterized, those involved in demethylation have remained elusive until recently. Mounting evidence now suggests that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, initiate active DNA demethylation by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). In this chapter, we discuss the molecular basis of DNA demethylation in mammalian genomes, focusing on TET proteins and TET-mediated oxidative DNA demethylation. Other potential DNA demethylation pathways are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  3. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187(4173):226–232

    Article  CAS  PubMed  Google Scholar 

  4. Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14(1):9–25

    Article  CAS  PubMed  Google Scholar 

  5. Henikoff S, Greally JM (2016) Epigenetics, cellular memory and gene regulation. Curr Biol 26(14):R644–R648

    Article  CAS  PubMed  Google Scholar 

  6. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330(6004):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54(5):716–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  9. Shen L, Song CX, He C, Zhang Y (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279(46):48350–48359

    Article  CAS  PubMed  Google Scholar 

  11. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912

    Article  CAS  PubMed  Google Scholar 

  12. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764

    Article  CAS  PubMed  Google Scholar 

  13. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  14. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    Article  CAS  PubMed  Google Scholar 

  15. Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6(5):a019133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu Y, Zhang X, Blumenthal RM, Cheng X (2013) A common mode of recognition for methylated CpG. Trends Biochem Sci 38(4):177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485

    Article  CAS  PubMed  Google Scholar 

  18. Kim J, Kollhoff A, Bergmann A, Stubbs L (2003) Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Hum Mol Genet 12(3):233–245

    Article  CAS  PubMed  Google Scholar 

  19. Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    Article  CAS  PubMed  Google Scholar 

  20. Rougier N, Bourc'his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E (1998) Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 12(14):2108–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen L, Inoue A, He J, Liu Y, Lu F, Zhang Y (2014) Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15(4):459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B, Walsh CP, Li J, Tang F, Xu GL (2014) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15(4):447–458

    Article  CAS  PubMed  Google Scholar 

  23. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48(6):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M (2013) Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 32(3):340–353

    Article  CAS  PubMed  Google Scholar 

  25. Vincent JJ, Huang Y, Chen PY, Feng S, Calvopina JH, Nee K, Lee SA, Le T, Yoon AJ, Faull K, Fan G, Rao A, Jacobsen SE, Pellegrini M, Clark AT (2013) Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 12(4):470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4(3):235–240

    Article  CAS  PubMed  Google Scholar 

  27. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893

    Article  CAS  PubMed  Google Scholar 

  28. Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G (2008) Transient cyclical methylation of promoter DNA. Nature 452(7183):112–115

    Article  CAS  PubMed  Google Scholar 

  29. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50

    Article  CAS  PubMed  Google Scholar 

  30. Thillainadesan G, Chitilian JM, Isovic M, Ablack JN, Mymryk JS, Tini M, Torchia J (2012) TGF-beta-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell 46(5):636–649

    Article  CAS  PubMed  Google Scholar 

  31. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 62(14):4075–4080

    CAS  PubMed  Google Scholar 

  32. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leuk Off J Leuk Soc Am Leuk Res Fund UK 17(3):637–641

    Article  CAS  Google Scholar 

  33. Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8(11):1698–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ (2010) Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20(6):659–672

    Article  CAS  PubMed  Google Scholar 

  36. Iyer LM, Abhiman S, Aravind L (2011) Natural history of eukaryotic DNA methylation systems. Prog Mol Biol Transl Sci 101:25–104

    Article  CAS  PubMed  Google Scholar 

  37. Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M, Shi YG, Zhu J, Wang P, Xu Y (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155(7):1545–1555

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C, Hu Y, Hu D, Zhao B, Cerovina T, Diao J, Wu F, He HH, Cui Q, Clark E, Ma C, Barbara A, Veenstra GJ, Xu G, Kaiser UB, Liu XS, Sugrue SP, He X, Min J, Kato Y, Shi YG (2012) Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151(6):1200–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu N, Wang M, Deng W, Schmidt CS, Qin W, Leonhardt H, Spada F (2013) Intrinsic and extrinsic connections of Tet3 Dioxygenase with CXXC zinc finger modules. PLoS One 8(5):e62755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ko M, An J, Bandukwala H, Chavez L (2013) Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin SG, Zhang ZM, Dunwell TL, Harter MR, Wu X, Johnson J, Li Z, Liu J, Szabo PE, Lu Q, Xu GL, Song J, Pfeifer GP (2016) Tet3 reads 5-Carboxylcytosine through its CXXC domain and is a potential Guardian against Neurodegeneration. Cell Rep 14(3):493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Borst P, Sabatini R (2008) Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol 62:235–251

    Article  CAS  PubMed  Google Scholar 

  44. Krebs C, Galonic Fujimori D, Walsh CT, Bollinger JM Jr (2007) Non-heme Fe(IV)-oxo intermediates. Acc Chem Res 40(7):484–492

    Article  CAS  PubMed  Google Scholar 

  45. Smiley JA, Kundracik M, Landfried DA, Barnes VR Sr, Axhemi AA (2005) Genes of the thymidine salvage pathway: thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa. Biochim Biophys Acta 1723(1–3):256–264

    Article  CAS  PubMed  Google Scholar 

  46. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286(41):35334–35338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Zhu JK (2012) Active DNA demethylation in plants and animals. Cold Spring Harb Symp Quant Biol 77:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stivers JT, Jiang YL (2003) A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev 103(7):2729–2759

    Article  CAS  PubMed  Google Scholar 

  52. Bennett MT, Rodgers MT, Hebert AS, Ruslander LE, Eisele L, Drohat AC (2006) Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J Am Chem Soc 128(38):12510–12519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Williams RT, Wang Y (2012) A density functional theory study on the kinetics and thermodynamics of N-glycosidic bond cleavage in 5-substituted 2′-deoxycytidines. Biochemistry 51(32):6458–6462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL, Stivers JT, Zhang Y, Kohli RM (2012) AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol 8(9):751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen L, Wu H, Diep D, Yamaguchi S, D'Alessio AC, Fung HL, Zhang K, Zhang Y (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153(3):692–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Song C-X, Szulwach KE, Dai Q, Fu Y, Mao S-Q, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu G-L, Jin P, He C (2013) Genome-wide profiling of 5-Formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, Abramowitz LK, Bartolomei MS, Rambow F, Bassi MR, Bruno T, Fanciulli M, Renner C, Klein-Szanto AJ, Matsumoto Y, Kobi D, Davidson I, Alberti C, Larue L, Bellacosa A (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146(1):67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cortazar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F, Steinacher R, Jiricny J, Bird A, Schar P (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470(7334):419–423

    Article  CAS  PubMed  Google Scholar 

  59. Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR, Bird A (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297(5580):403–405

    Article  CAS  PubMed  Google Scholar 

  60. Kemmerich K, Dingler FA, Rada C, Neuberger MS (2012) Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung−/−Msh2−/− mice. Nucleic Acids Res 40(13):6016–6025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu GL, Luo C, Jiang H, He C (2012) Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 8(4):328–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40(11):4841–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67(3):946–950

    Article  CAS  PubMed  Google Scholar 

  64. Ji D, Lin K, Song J, Wang Y (2014) Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Mol BioSyst 10(7):1749–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334(6053):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118):448–452

    Article  CAS  PubMed  Google Scholar 

  68. Schiesser S, Hackner B, Pfaffeneder T, Muller M, Hagemeier C, Truss M, Carell T (2012) Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed 51(26):6516–6520

    Article  CAS  Google Scholar 

  69. Chen CC, Wang KY, Shen CK (2012) The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem 287(40):33116–33121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liutkeviciute Z, Lukinavicius G, Masevicius V, Daujotyte D, Klimasauskas S (2009) Cytosine-5-methyltransferases add aldehydes to DNA. Nat Chem Biol 5(6):400–402

    Article  CAS  PubMed  Google Scholar 

  71. Liutkeviciute Z, Kriukiene E, Licyte J, Rudyte M, Urbanaviciute G, Klimasauskas S (2014) Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases. J Am Chem Soc 136(16):5884–5887

    Article  CAS  PubMed  Google Scholar 

  72. Conticello SG (2008) The AID/APOBEC family of nucleic acid mutators. Genome Biol 9(6):229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145(3):423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bransteitter R, Pham P, Scharff MD, Goodman MF (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 100(7):4102–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rangam G, Schmitz KM, Cobb AJ, Petersen-Mahrt SK (2012) AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PLoS One 7(8):e43279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133(7):1145–1148

    Article  CAS  PubMed  Google Scholar 

  77. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397(6720):579–583

    Article  CAS  PubMed  Google Scholar 

  78. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182

    Article  CAS  PubMed  Google Scholar 

  79. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463(7280):554–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen CC, Wang KY, Shen CK (2013) DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 288(13):9084–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu B, Zheng Y, Hess D, Angliker H, Schwarz S, Siegmann M, Thiry S, Jost JP (2000) 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci U S A 97(10):5135–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, Jost JP (2000) 5-methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 28(21):4157–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279(50):52353–52360

    Article  CAS  PubMed  Google Scholar 

  85. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135(7):1201–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463(7284):1101–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463(7284):1042–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumar R, DiMenna L, Schrode N, Liu TC, Franck P, Munoz-Descalzo S, Hadjantonakis AK, Zarrin AA, Chaudhuri J, Elemento O, Evans T (2013) AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature 500(7460):89–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445(7128):671–675

    Article  CAS  PubMed  Google Scholar 

  90. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323(5917):1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmitz KM, Schmitt N, Hoffmann-Rohrer U, Schafer A, Grummt I, Mayer C (2009) TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33(3):344–353

    Article  CAS  PubMed  Google Scholar 

  92. Engel N, Tront JS, Erinle T, Nguyen N, Latham KE, Sapienza C, Hoffman B, Liebermann DA (2009) Conserved DNA methylation in Gadd45a(−/−) mice. Epigenetics 4(2):98–99

    Article  CAS  PubMed  Google Scholar 

  93. Jin SG, Guo C, Pfeifer GP (2008) GADD45A does not promote DNA demethylation. PLoS Genet 4(3):e1000013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492(7429):443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamaguchi S, Hong K, Liu R, Inoue A, Shen L, Zhang K, Zhang Y (2013) Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res 23(3):329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  PubMed  CAS  Google Scholar 

  98. Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108(9):3642–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402

    Article  CAS  PubMed  Google Scholar 

  100. Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, Beringer G, Brikbak NJ, Yuan X, Cantley LC, Richardson AL, Pandolfi PP (2013) MicroRNA-antagonism regulates breast cancer Stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154(2):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Song Su J, Ito K, Ala U, Kats L, Webster K, Sun Su M, Jongen-Lavrencic M, Manova-Todorova K, Teruya-Feldstein J, Avigan David E, Delwel R, Pandolfi Pier P (2013) The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13:87–101

    Article  PubMed  CAS  Google Scholar 

  103. Wang Y, Zhang Y (2014) Regulation of TET protein stability by Calpains. Cell Rep 6(2):278–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Coulter JB, O'Driscoll CM, Bressler JP (2013) Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (Tet1) 5-methylcytosine dioxygenase. J Biol Chem 288(40):28792–28800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang H, Lin H, Xu H, Zhang L, Cheng L, Wen B, Shou J, Guan K, Xiong Y, Ye D (2014) TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. Cell Res 24(8):1017–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26(12):1326–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yin R, Mao S-Q, Zhao B, Chong Z, Yang Y, Zhao C, Zhang D, Huang H, Gao J, Li Z, Jiao Y, Li C, Liu S, Wu D, Gu W, Yang Y-G, Xu G-L, Wang H (2013) Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 135(28):10396–10403

    Article  CAS  PubMed  Google Scholar 

  112. Minor EA, Court BL, Young JI, Wang G (2013) Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J Biol Chem 288(19):13669–13674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500(7461):222–226

    Google Scholar 

  114. Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, Ma D, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen Q, Chen Y, Bian C, Fujiki R, Yu X (2013) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561–564

    Article  CAS  PubMed  Google Scholar 

  116. Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A, Roberto A, Christensen J, Bonaldi T, Helin K, Pasini D (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49:645–656

    Article  CAS  PubMed  Google Scholar 

  117. Shi FT, Kim H, Lu W, He Q, Liu D, Goodell MA, Wan M, Songyang Z (2013) Ten-eleven translocation 1 (tet1) is regulated by o-linked N-acetylglucosamine transferase (ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288(29):20776–20784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang Q, Liu X, Gao W, Li P, Hou J, Li J, Wong J (2014) Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-N-acetylglucosamine transferase (OGT). J Biol Chem 289(9):5986–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, Wang P, Yang H, Ma S, Lin H, Jiao B, Ren R, Ye D, Guan KL, Xiong Y (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 57(4):662–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486(7403):415–419

    CAS  PubMed  Google Scholar 

  121. Bian C, Yu X (2014) PGC7 suppresses TET3 for protecting DNA methylation. Nucleic Acids Res 42(5):2893–2905

    Article  CAS  PubMed  Google Scholar 

  122. Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147(7):1498–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC, Bauer C, Münzel M, Wagner M, Müller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Müller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shi, M., Shen, L. (2017). The Molecular Basis of DNA Demethylation. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics