Skip to main content

DNA and Histone Methylation in Prostate Cancer

  • Chapter
  • First Online:
DNA and Histone Methylation as Cancer Targets

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1204 Accesses

Abstract

As a model of “epigenetic catastrophe”, prostate cancer is driven by progressive epigenetic changes that arise early in carcinogenesis and persist throughout disease progression. In this chapter, two common epigenetic modifications, DNA methylation and histone methylation, are reviewed regarding their up-to-date roles in the disease. DNA hypermethylation at certain promoter regions is an early event during prostate tumorigenesis and epigenetically silences tumor suppressor genes. Genome-wide DNA hypomethylation is thought to activate oncogenes and becomes more extensive as the tumors become metastatic and aggressive. Dynamic regulation of histone methylation patterns leads to cancer-specific transcriptional profiles, and histone-modifying enzymes closely crosstalk with critical biological pathways such as the androgen receptor (AR) signaling. The functions and features of these two epigenetic programs make them highly promising as diagnostic and prognostic biomarkers or new therapeutic targets for prostate cancer. However, epigenetic therapy is still in its infancy and imposes a lot of challenging issues such as specificity, toxicity and potency. Therefore, we need to comprehensively understand the epigenetic regulatory mechanisms of prostate cancer development and progression, identify the pharmacodynamics and biomarkers of the epigenetic drugs targeting DNA methylation or histone methylation to better stratify patient populations who will likely benefit from the precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffiths J (1889) Observations on the function of the prostate gland in man and the lower animals: part II. J Anat Physiol 24:27–41

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schirmer HK, Walton KN, Scott WW (1964) Prostatic epithelial cells: their preparation and catalase activity. Investig Urol 1:301–306

    CAS  Google Scholar 

  3. Greene LF, Farrow GM, Ravits JM, Tomera FM (1979) Prostatic adenocarcinoma of ductal origin. J Urol 121:303–305

    Article  CAS  PubMed  Google Scholar 

  4. Merchant DJ (1976) Prostatic tissue cell growth and assessment. Semin Oncol 3:131–140

    CAS  PubMed  Google Scholar 

  5. Hudson DL (2003) Prostate epithelial stem cell culture. Cytotechnology 41:189–196

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chung LW (1995) The role of stromal-epithelial interaction in normal and malignant growth. Cancer Surv 23:33–42

    CAS  PubMed  Google Scholar 

  7. Mostofi FK, Sesterhenn IA, Davis CJ (1987) Progress in pathology of carcinoma of prostate. Prog Clin Biol Res 243A:445–475

    CAS  PubMed  Google Scholar 

  8. Bashir MN (2015) Epidemiology of prostate cancer. Asian Pac J Cancer Prev 16:5137–5141

    Article  PubMed  Google Scholar 

  9. American Cancer Society (2016) Cancer facts & figures 2016. American Cancer Society, Atlanta

    Google Scholar 

  10. Walker AR (1986) Prostate cancer--some aspects of epidemiology, risk factors, treatment and survival. S Afr Med J 69:44–47

    CAS  PubMed  Google Scholar 

  11. Kerr L et al (2016) A cohort analysis of men with a family history of BRCA1/2 and Lynch mutations for prostate cancer. BMC Cancer 16:529

    Article  PubMed  PubMed Central  Google Scholar 

  12. Simental JA, Sar M, Wilson EM (1992) Domain functions of the androgen receptor. J Steroid Biochem Mol Biol 43:37–41

    Article  CAS  PubMed  Google Scholar 

  13. Denis LJ et al (1998) Maximal androgen blockade: final analysis of EORTC phase III trial 30853. EORTC Genito-Urinary Tract Cancer Cooperative Group and the EORTC Data Center. Eur Urol 33:144–151

    Article  CAS  PubMed  Google Scholar 

  14. Kantoff PW et al (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lassi K, Dawson NA (2009) Emerging therapies in castrate-resistant prostate cancer. Curr Opin Oncol 21:260–265

    Article  CAS  PubMed  Google Scholar 

  16. Berry W, Dakhil S, Modiano M, Gregurich M, Asmar L (2002) Phase III study of mitoxantrone plus low dose prednisone versus low dose prednisone alone in patients with asymptomatic hormone refractory prostate cancer. J Urol 168:2439–2443

    Article  CAS  PubMed  Google Scholar 

  17. Wadosky KM, Koochekpour S (2016) Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 7(39):64447–64470

    Article  PubMed  PubMed Central  Google Scholar 

  18. Massenkeil G et al (1994) P53 mutations and loss of heterozygosity on chromosomes 8p, 16q, 17p, and 18q are confined to advanced prostate cancer. Anticancer Res 14:2785–2790

    CAS  PubMed  Google Scholar 

  19. Phin S, Moore MW, Cotter PD (2013) Genomic rearrangements of PTEN in prostate cancer. Front Oncol 3:240

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tomlins SA et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  CAS  PubMed  Google Scholar 

  21. Linja MJ, Visakorpi T (2004) Alterations of androgen receptor in prostate cancer. J Steroid Biochem Mol Biol 92:255–264

    Article  CAS  PubMed  Google Scholar 

  22. Boysen G et al (2015) SPOP mutation leads to genomic instability in prostate cancer. elife 4:e09207

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barbieri CE et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holliday R (1994) Epigenetics: an overview. Dev Genet 15:453–457

    Article  CAS  PubMed  Google Scholar 

  25. Chomet PS (1991) Cytosine methylation in gene-silencing mechanisms. Curr Opin Cell Biol 3:438–443

    Article  CAS  PubMed  Google Scholar 

  26. Pradhan S, Esteve PO (2003) Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 109:6–16

    Article  CAS  PubMed  Google Scholar 

  27. Ikeda Y, Kinoshita T (2009) DNA demethylation: a lesson from the garden. Chromosoma 118:37–41

    Article  CAS  PubMed  Google Scholar 

  28. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schulz WA, Hatina J (2006) Epigenetics of prostate cancer: beyond DNA methylation. J Cell Mol Med 10:100–125

    Article  CAS  PubMed  Google Scholar 

  30. Kinoshita H et al (2000) Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res 60:3623–3630

    CAS  PubMed  Google Scholar 

  31. Nakayama T et al (2000) Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab Investig 80:1789–1796

    Article  CAS  PubMed  Google Scholar 

  32. Jarrard DF et al (1998) Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res 58:5310–5314

    CAS  PubMed  Google Scholar 

  33. Li LC, Yeh CC, Nojima D, Dahiya R (2000) Cloning and characterization of human estrogen receptor beta promoter. Biochem Biophys Res Commun 275:682–689

    Article  CAS  PubMed  Google Scholar 

  34. Nojima D et al (2001) CpG hypermethylation of the promoter region inactivates the estrogen receptor-beta gene in patients with prostate carcinoma. Cancer 92:2076–2083

    Article  CAS  PubMed  Google Scholar 

  35. Li LC et al (2000) Frequent methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res 60:702–706

    CAS  PubMed  Google Scholar 

  36. Royuela M et al (2001) Estrogen receptors alpha and beta in the normal, hyperplastic and carcinomatous human prostate. J Endocrinol 168:447–454

    Article  CAS  PubMed  Google Scholar 

  37. Nelson AW, Tilley WD, Neal DE, Carroll JS (2014) Estrogen receptor beta in prostate cancer: friend or foe? Endocr Relat Cancer 21:T219–T234

    Article  CAS  PubMed  Google Scholar 

  38. Yeh CR, Da J, Song W, Fazili A, Yeh S (2014) Estrogen receptors in prostate development and cancer. Am J Clin Exp Urol 2:161–168

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jeronimo C et al (2004) Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res 10:4010–4014

    Article  CAS  PubMed  Google Scholar 

  40. Yamanaka M et al (2003) Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer 106:382–387

    Article  CAS  PubMed  Google Scholar 

  41. Nakayama T et al (2001) The role of epigenetic modifications in retinoic acid receptor beta2 gene expression in human prostate cancers. Lab Investig 81:1049–1057

    Article  CAS  PubMed  Google Scholar 

  42. Dumache R et al (2012) Retinoic acid receptor beta2 (RARbeta2): nonivasive biomarker for distinguishing malignant versus benign prostate lesions from bodily fluids. Chirurgia (Bucur) 107:780–784

    CAS  Google Scholar 

  43. Woodson K, Hanson J, Tangrea J (2004) A survey of gene-specific methylation in human prostate cancer among black and white men. Cancer Lett 205:181–188

    Article  CAS  PubMed  Google Scholar 

  44. Gao T et al (2013) The association of retinoic acid receptor beta2(RARbeta2) methylation status and prostate cancer risk: a systematic review and meta-analysis. PLoS One 8:e62950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martignano F et al (2016) GSTP1 methylation and protein expression in prostate cancer: diagnostic implications. Dis Markers 2016:4358292

    Article  PubMed  PubMed Central  Google Scholar 

  46. Maldonado L et al (2014) GSTP1 promoter methylation is associated with recurrence in early stage prostate cancer. J Urol 192:1542–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yegnasubramanian S et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986

    Article  CAS  PubMed  Google Scholar 

  48. Konishi N et al (2002) DNA hypermethylation status of multiple genes in prostate adenocarcinomas. Jpn J Cancer Res 93:767–773

    Article  CAS  PubMed  Google Scholar 

  49. Kang GH, Lee S, Lee HJ, Hwang KS (2004) Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol 202:233–240

    Article  CAS  PubMed  Google Scholar 

  50. Jarrard DF et al (1997) Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer 19:90–96

    Article  CAS  PubMed  Google Scholar 

  51. Gu K, Mes-Masson AM, Gauthier J, Saad F (1998) Analysis of the p16 tumor suppressor gene in early-stage prostate cancer. Mol Carcinog 21:164–170

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen TT et al (2000) Analysis of cyclin-dependent kinase inhibitor expression and methylation patterns in human prostate cancers. Prostate 43:233–242

    Article  CAS  PubMed  Google Scholar 

  53. Liu L, Yoon JH, Dammann R, Pfeifer GP (2002) Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene 21:6835–6840

    Article  CAS  PubMed  Google Scholar 

  54. Kawamoto K et al (2007) Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer. Clin Cancer Res 13:2541–2548

    Article  CAS  PubMed  Google Scholar 

  55. Singal R, Ferdinand L, Reis IM, Schlesselman JJ (2004) Methylation of multiple genes in prostate cancer and the relationship with clinicopathological features of disease. Oncol Rep 12:631–637

    CAS  PubMed  Google Scholar 

  56. Park JY (2010) Promoter hypermethylation in prostate cancer. Cancer Control 17:245–255

    Article  PubMed  PubMed Central  Google Scholar 

  57. Graff JR et al (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199

    CAS  PubMed  Google Scholar 

  58. Li LC et al (2001) Methylation of the E-cadherin gene promoter correlates with progression of prostate cancer. J Urol 166:705–709

    Article  CAS  PubMed  Google Scholar 

  59. Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J (2003) Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate 55:199–205

    Article  CAS  PubMed  Google Scholar 

  60. Saha B et al (2008) Unmethylated E-cadherin gene expression is significantly associated with metastatic human prostate cancer cells in bone. Prostate 68:1681–1688

    Article  CAS  PubMed  Google Scholar 

  61. Guilford P et al (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392:402–405

    Article  CAS  PubMed  Google Scholar 

  62. Dossus L, Benusiglio PR (2015) Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Res 17:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Richiardi L et al (2009) Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol 27:3161–3168

    Article  CAS  PubMed  Google Scholar 

  64. Henrique R et al (2007) High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res 13:6122–6129

    Article  CAS  PubMed  Google Scholar 

  65. Chen Y et al (2013) APC gene hypermethylation and prostate cancer: a systematic review and meta-analysis. Eur J Hum Genet 21:929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yaqinuddin A et al (2013) Frequent DNA hypermethylation at the RASSF1A and APC Gene loci in prostate cancer patients of Pakistani origin. ISRN Urol 2013:627249

    PubMed  PubMed Central  Google Scholar 

  67. Rosenbaum E et al (2005) Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res 11:8321–8325

    Article  CAS  PubMed  Google Scholar 

  68. Majumdar S, Buckles E, Estrada J, Koochekpour S (2011) Aberrant DNA methylation and prostate cancer. Curr Genomics 12:486–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schulz WA et al (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65

    Article  CAS  PubMed  Google Scholar 

  70. Cho NY, Kim JH, Moon KC, Kang GH (2009) Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch 454:17–23

    Article  CAS  PubMed  Google Scholar 

  71. Brothman AR et al (2005) Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? Cancer Genet Cytogenet 156:31–36

    Article  CAS  PubMed  Google Scholar 

  72. Bedford MT, van Helden PD (1987) Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res 47:5274–5276

    CAS  PubMed  Google Scholar 

  73. Florl AR et al (2004) Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer 91:985–994

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yegnasubramanian S et al (2008) DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res 68:8954–8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim R, Kulkarni P, Hannenhalli S (2013) Derepression of cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 13:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Veldhuizen PJ, Sadasivan R, Cherian R, Wyatt A (1996) Urokinase-type plasminogen activator expression in human prostate carcinomas. Am J Med Sci 312:8–11

    Article  PubMed  Google Scholar 

  77. Pulukuri SM, Estes N, Patel J, Rao JS (2007) Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Res 67:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pakneshan P, Xing RH, Rabbani SA (2003) Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo. FASEB J 17:1081–1088

    Article  CAS  PubMed  Google Scholar 

  79. Suyama T et al (2010) Expression of cancer/testis antigens in prostate cancer is associated with disease progression. Prostate 70:1778–1787

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Laner T, Schulz WA, Engers R, Muller M, Florl AR (2005) Hypomethylation of the XIST gene promoter in prostate cancer. Oncol Res 15:257–264

    CAS  PubMed  Google Scholar 

  81. Wang Q et al (2007) Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer. Oncogene 26:6560–6565

    Article  CAS  PubMed  Google Scholar 

  82. Tokizane T et al (2005) Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res 11:5793–5801

    Article  CAS  PubMed  Google Scholar 

  83. Li LC, Carroll PR, Dahiya R (2005) Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 97:103–115

    Article  CAS  PubMed  Google Scholar 

  84. Gershey EL, Haslett GW, Vidali G, Allfrey VG (1969) Chemical studies of histone methylation. Evidence for the occurrence of 3-methylhistidine in avian erythrocyte histone fractions. J Biol Chem 244:4871–4877

    CAS  PubMed  Google Scholar 

  85. Borun TW, Pearson D, Paik WK (1972) Studies of histone methylation during the HeLa S-3 cell cycle. J Biol Chem 247:4288–4298

    CAS  PubMed  Google Scholar 

  86. van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745–756

    Article  PubMed  Google Scholar 

  87. Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112:711–723

    Article  CAS  PubMed  Google Scholar 

  88. Feng Y et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288:37010–37025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lakowski TM, Frankel A (2009) Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 421:253–261

    Article  CAS  PubMed  Google Scholar 

  90. Schapira M, Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. Medchemcomm 5:1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Branscombe TL et al (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276:32971–32976

    Article  CAS  PubMed  Google Scholar 

  92. Walport LJ et al (2016) Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun 7:11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318:444–447

    Article  CAS  PubMed  Google Scholar 

  94. Walport LJ, Hopkinson RJ, Schofield CJ (2012) Mechanisms of human histone and nucleic acid demethylases. Curr Opin Chem Biol 16:525–534

    Article  CAS  PubMed  Google Scholar 

  95. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  96. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  97. Wang Y, Jia S (2009) Degrees make all the difference: the multifunctionality of histone H4 lysine 20 methylation. Epigenetics 4:273–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li B et al (2009) Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J Biol Chem 284:7970–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao Q et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Otani J et al (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang Y et al (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ellinger J et al (2010) Global levels of histone modifications predict prostate cancer recurrence. Prostate 70:61–69

    Article  CAS  PubMed  Google Scholar 

  103. Ellinger J et al (2012) Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer. Cancer Investig 30:92–97

    Article  CAS  Google Scholar 

  104. Ngollo M et al (2014) The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: relationship with clinicopathological parameters. BMC Cancer 14:994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Deligezer U et al (2010) Post-treatment circulating plasma BMP6 mRNA and H3K27 methylation levels discriminate metastatic prostate cancer from localized disease. Clin Chim Acta 411:1452–1456

    Article  CAS  PubMed  Google Scholar 

  106. Seligson DB et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    Article  CAS  PubMed  Google Scholar 

  107. Bianco-Miotto T et al (2010) Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomark Prev 19:2611–2622

    Article  CAS  Google Scholar 

  108. Zhou LX et al (2010) Application of histone modification in the risk prediction of the biochemical recurrence after radical prostatectomy. Asian J Androl 12:171–179

    Article  CAS  PubMed  Google Scholar 

  109. Yu J et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663

    Article  CAS  PubMed  Google Scholar 

  110. Yu J et al (2007) Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12:419–431

    Article  CAS  PubMed  Google Scholar 

  111. Chen H, Tu SW, Hsieh JT (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280:22437–22444

    Article  CAS  PubMed  Google Scholar 

  112. Wang Q et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Metzger E et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    CAS  PubMed  Google Scholar 

  114. Yamane K et al (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495

    Article  CAS  PubMed  Google Scholar 

  115. Wissmann M et al (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353

    Article  CAS  PubMed  Google Scholar 

  116. Zhao JC et al (2012) Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res 22:322–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chng KR et al (2012) A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J 31:2810–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cohen I, Poreba E, Kamieniarz K, Schneider R (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2:631–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Karanikolas BD, Figueiredo ML, Wu L (2009) Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol Cancer Res 7:1456–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu K et al (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338:1465–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bryant RJ, Winder SJ, Cross SS, Hamdy FC, Cunliffe VT (2008) The Polycomb Group protein EZH2 regulates actin polymerization in human prostate cancer cells. Prostate 68:255–263

    Article  CAS  PubMed  Google Scholar 

  122. He A et al (2012) PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev 26:37–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim E et al (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23:839–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee JM et al (2012) EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 48:572–586

    Article  CAS  PubMed  Google Scholar 

  125. Gonzalez-Perez A, Jene-Sanz A, Lopez-Bigas N (2013) The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol 14:r106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wang JK et al (2010) The histone demethylase UTX enables RB-dependent cell fate control. Genes Dev 24:327–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Herz HM et al (2010) The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol Cell Biol 30:2485–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Denton D et al (2013) UTX coordinates steroid hormone-mediated autophagy and cell death. Nat Commun 4:2916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Agger K et al (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23:1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Barradas M et al (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23:1177–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim JH et al (2014) UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res 74:1705–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xiang Y et al (2007) JMJD3 is a histone H3K27 demethylase. Cell Res 17:850–857

    Article  CAS  PubMed  Google Scholar 

  133. Li Y et al (2016) Structural basis for activity regulation of MLL family methyltransferases. Nature 530:447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kumar A et al (2011) Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci U S A 108:17087–17092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brenner JC, Chinnaiyan AM (2009) Translocations in epithelial cancers. Biochim Biophys Acta 1796:201–215

    CAS  PubMed  Google Scholar 

  136. Malik R et al (2015) Targeting the MLL complex in castration-resistant prostate cancer. Nat Med 21:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim JY et al (2014) A role for WDR5 in integrating threonine 11 phosphorylation to lysine 4 methylation on histone H3 during androgen signaling and in prostate cancer. Mol Cell 54:613–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sun S et al (2016) BAP18 coactivates androgen receptor action and promotes prostate cancer progression. Nucleic Acids Res 44(17):8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gajula RP et al (2013) The twist box domain is required for Twist1-induced prostate cancer metastasis. Mol Cancer Res 11:1387–1400

    Article  CAS  PubMed  Google Scholar 

  140. Seigne C et al (2010) Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice. BMC Cancer 10:395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Tomlins SA et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39:41–51

    Article  CAS  PubMed  Google Scholar 

  142. Varambally S et al (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8:393–406

    Article  CAS  PubMed  Google Scholar 

  143. Dhanasekaran SM et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826

    Article  CAS  PubMed  Google Scholar 

  144. Paris PL et al (2009) An oncogenic role for the multiple endocrine neoplasia type 1 gene in prostate cancer. Prostate Cancer Prostatic Dis 12:184–191

    Article  CAS  PubMed  Google Scholar 

  145. Kahl P et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66:11341–11347

    Article  CAS  PubMed  Google Scholar 

  146. Wang M et al (2015) Relationship between LSD1 expression and E-cadherin expression in prostate cancer. Int Urol Nephrol 47:485–490

    Article  PubMed  CAS  Google Scholar 

  147. Shi YJ et al (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19:857–864

    Article  CAS  PubMed  Google Scholar 

  148. Hakimi MA et al (2002) A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci U S A 99:7420–7425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang Y et al (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672

    Article  CAS  PubMed  Google Scholar 

  150. Cai C et al (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20:457–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Metzger E et al (2008) Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10:53–60

    Article  CAS  PubMed  Google Scholar 

  152. Metzger E et al (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464:792–796

    Article  CAS  PubMed  Google Scholar 

  153. Ketscher A et al (2014) LSD1 controls metastasis of androgen-independent prostate cancer cells through PXN and LPAR6. Oncogene 3:e120

    Article  CAS  Google Scholar 

  154. Kashyap V et al (2013) The lysine specific demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. Mol Oncol 7:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang J et al (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449:105–108

    Article  CAS  PubMed  Google Scholar 

  156. Cho HS et al (2011) Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res 71:655–660

    Article  CAS  PubMed  Google Scholar 

  157. Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37–50

    Article  CAS  PubMed  Google Scholar 

  158. Hong H et al (2004) Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer 101:83–89

    Article  CAS  PubMed  Google Scholar 

  159. Majumder S, Liu Y, Ford OH 3rd, Mohler JL, Whang YE (2006) Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66:1292–1301

    Article  CAS  PubMed  Google Scholar 

  160. Meyer R, Wolf SS, Obendorf M (2007) PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 107:1–14

    Article  CAS  PubMed  Google Scholar 

  161. Gaughan L et al (2011) Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res 39:1266–1279

    Article  CAS  PubMed  Google Scholar 

  162. Ko S et al (2011) Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol 25:433–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee WH, Isaacs WB, Bova GS, Nelson WG (1997) CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol Biomark Prev 6:443–450

    CAS  Google Scholar 

  164. Bastian PJ et al (2004) Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur Urol 46:698–708

    Article  CAS  PubMed  Google Scholar 

  165. Brooks JD et al (1998) CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomark Prev 7:531–536

    CAS  Google Scholar 

  166. Jeronimo C et al (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60:753–766

    Article  CAS  PubMed  Google Scholar 

  167. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG (2003) Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 9:2673–2677

    CAS  PubMed  Google Scholar 

  168. Roupret M et al (2007) Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin Cancer Res 13:1720–1725

    Article  CAS  PubMed  Google Scholar 

  169. Suzuki M et al (2006) Methylation of apoptosis related genes in the pathogenesis and prognosis of prostate cancer. Cancer Lett 242:222–230

    Article  CAS  PubMed  Google Scholar 

  170. Maruyama R et al (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8:514–519

    CAS  PubMed  Google Scholar 

  171. Stott-Miller M et al (2014) Validation study of genes with hypermethylated promoter regions associated with prostate cancer recurrence. Cancer Epidemiol Biomark Prev 23:1331–1339

    Article  CAS  Google Scholar 

  172. Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174

    Article  CAS  PubMed  Google Scholar 

  173. Mahon KL et al (2014) Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br J Cancer 111:1802–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kaminskas E et al (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608

    Article  CAS  PubMed  Google Scholar 

  175. Kantarjian H et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    Article  CAS  PubMed  Google Scholar 

  176. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    Article  CAS  PubMed  Google Scholar 

  177. VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH (2011) Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot (Tokyo) 64:525–531

    Article  CAS  Google Scholar 

  178. Poole RM (2014) Belinostat: first global approval. Drugs 74:1543–1554

    Article  CAS  PubMed  Google Scholar 

  179. Tian J et al (2012) Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2′-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 287:39954–39966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gravina GL et al (2008) Chronic azacitidine treatment results in differentiating effects, sensitizes against bicalutamide in androgen-independent prostate cancer cells. Prostate 68:793–801

    Article  CAS  PubMed  Google Scholar 

  181. Valente S et al (2014) Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem 57:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chuang JC et al (2005) Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 4:1515–1520

    Article  CAS  PubMed  Google Scholar 

  183. Graca I et al (2014) Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des 20:1803–1811

    Article  CAS  PubMed  Google Scholar 

  184. Vardi A et al (2010) Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo 24:393–400

    CAS  PubMed  Google Scholar 

  185. Jagadeesh S, Sinha S, Pal BC, Bhattacharya S, Banerjee PP (2007) Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun 362:212–217

    Article  CAS  PubMed  Google Scholar 

  186. Singal R et al (2015) Phase I/II study of azacitidine, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel-based therapy. Clin Genitourin Cancer 13:22–31

    Article  PubMed  Google Scholar 

  187. Thibault A et al (1998) A phase II study of 5-aza-2'deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 84:87–89

    CAS  PubMed  Google Scholar 

  188. Miranda TB et al (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8:1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Crea F et al (2011) Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 10:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hibino S et al (2014) Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells. Oncogene 3:e104

    Article  CAS  Google Scholar 

  191. Knutson SK et al (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896

    CAS  PubMed  Google Scholar 

  192. McCabe MT et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112

    Article  CAS  PubMed  Google Scholar 

  193. Qi W et al (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 109:21360–21365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wu C et al (2016) Inhibition of EZH2 by chemo- and radiotherapy agents and small molecule inhibitors induces cell death in castration-resistant prostate cancer. Oncotarget 7:3440–3452

    Article  PubMed  Google Scholar 

  195. Wang M et al (2015) Inhibition of LSD1 by Pargyline inhibited process of EMT and delayed progression of prostate cancer in vivo. Biochem Biophys Res Commun 467:310–315

    Article  CAS  PubMed  Google Scholar 

  196. Lee HT, Choi MR, Doh MS, Jung KH, Chai YG (2013) Effects of the monoamine oxidase inhibitors pargyline and tranylcypromine on cellular proliferation in human prostate cancer cells. Oncol Rep 30:1587–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ueda R et al (2009) Identification of cell-active lysine specific demethylase 1-selective inhibitors. J Am Chem Soc 131:17536–17537

    Article  CAS  PubMed  Google Scholar 

  198. Sorna V et al (2013) High-throughput virtual screening identifies novel N'-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. J Med Chem 56:9496–9508

    Article  CAS  PubMed  Google Scholar 

  199. Willmann D et al (2012) Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int J Cancer 131:2704–2709

    Article  CAS  PubMed  Google Scholar 

  200. Etani T et al (2015) NCL1, a highly selective lysine-specific demethylase 1 inhibitor, suppresses prostate cancer without adverse effect. Oncotarget 6:2865–2878

    Article  PubMed  Google Scholar 

  201. Rotili D et al (2014) Pan-histone demethylase inhibitors simultaneously targeting Jumonji C and lysine-specific demethylases display high anticancer activities. J Med Chem 57:42–55

    Article  CAS  PubMed  Google Scholar 

  202. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145

    Article  CAS  PubMed  Google Scholar 

  203. Kubicek S et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481

    Article  CAS  PubMed  Google Scholar 

  204. Liu F et al (2010) Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J Med Chem 53:5844–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sweis RF et al (2014) Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Med Chem Lett 5:205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lee E et al (2013) Inhibition of androgen receptor and beta-catenin activity in prostate cancer. Proc Natl Acad Sci U S A 110:15710–15715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, K. (2017). DNA and Histone Methylation in Prostate Cancer. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics