Skip to main content

DNA and Histone Methylation in Hematopoietic Malignancy

Biology of Epigenetic Regulators in Hematological Malignancies as Basis of Therapeutic Targets

  • Chapter
  • First Online:
DNA and Histone Methylation as Cancer Targets

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1160 Accesses

Abstract

Recent advances in next-generation sequencing technologies have revealed frequent somatic mutations in hematological malignancies. As the epigenetic landscapes of hematological malignancies are unveiled, epigenetic regulatory processes have become therapeutic targets. After the success of hypomethylating agents, azacitidine and decitabine for myelodysplastic syndrome (both FDA-approved), inhibitors of other epigenetic regulators have become candidate agents for next-generation therapy against refractory hematological malignancies. In addition to tyrosine kinase inhibitors and immunotherapeutic agents, inhibitors of epigenetic regulators have been used either in a salvage monotherapy regimen or in combination therapy with conventional chemotherapy. In this chapter, alterations in DNA cytosine methylation and histone methylation as targets of therapeutics for hematological malignancies are discussed with outlines of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    Article  CAS  PubMed  Google Scholar 

  2. Shih AH, Abdel-Wahab O, Patel JP, Levine RL (2012) The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 12(9):599–612

    Article  CAS  PubMed  Google Scholar 

  3. Coombs CC, Tallman MS, Levine RL (2016) Molecular therapy for acute myeloid leukaemia. Nat Rev Clin Oncol 13(5):305–318

    Article  CAS  PubMed  Google Scholar 

  4. Pastore F, Levine RL (2016) Epigenetic regulators and their impact on therapy in acute myeloid leukemia. Haematologica 101(3):269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kitamura T, Inoue D, Okochi-Watanabe N, Kato N, Komeno Y, Lu Y et al (2014) The molecular basis of myeloid malignancies. Proc Jpn Acad Ser B Phys Biol Sci 90(10):389–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42(8):665–667

    Article  CAS  PubMed  Google Scholar 

  8. Raza A, Galili N (2012) The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer 12(12):849–859

    Article  CAS  PubMed  Google Scholar 

  9. Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B et al (2015) Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev 263(1):50–67

    Article  CAS  PubMed  Google Scholar 

  10. You MJ, Medeiros LJ, Hsi ED (2015) T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol 144(3):411–422

    Article  CAS  PubMed  Google Scholar 

  11. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al (2011) Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25(7):1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ewalt M, Galili NG, Mumtaz M, Churchill M, Rivera S, Borot F et al (2011) DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J 1(3):e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204(4):715–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Illingworth RS, Bird AP (2009) CpG islands—‘a rough guide’. FEBS Lett 583(11):1713–1720

    Article  CAS  PubMed  Google Scholar 

  15. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321(6067):209–213

    Article  CAS  PubMed  Google Scholar 

  16. Grossmann V, Haferlach C, Weissmann S, Roller A, Schindela S, Poetzinger F et al (2013) The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 52(4):410–422

    Article  CAS  PubMed  Google Scholar 

  17. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, Haydu JE, Rigo I, Hadler M et al (2011) ETV6 mutations in early immature human T cell leukemias. J Exp Med 208(13):2571–2579

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ostler KR, Davis EM, Payne SL, Gosalia BB, Exposito-Cespedes J, Le Beau MM et al (2007) Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 26(38):5553–5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhyasen GW, Starczynowski DT (2012) Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26(1):13–22

    Article  CAS  PubMed  Google Scholar 

  20. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074

    Article  Google Scholar 

  22. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamaguchi S, Iwanaga E, Tokunaga K, Nanri T, Shimomura T, Suzushima H et al (2014) IDH1 and IDH2 mutations confer an adverse effect in patients with acute myeloid leukemia lacking the NPM1 mutation. Eur J Haematol 92(6):471–477

    Article  CAS  PubMed  Google Scholar 

  24. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C et al (2012) Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26(5):934–942

    Article  CAS  PubMed  Google Scholar 

  25. Ganguly BB, Kadam NN (2016) Mutations of myelodysplastic syndromes (MDS): an update. Mutat Res Rev Mutat Res 769:47–62

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brustle A et al (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S et al (2012) A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev 26(7):651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdel-Wahab O, Patel J, Levine RL (2011) Clinical implications of novel mutations in epigenetic modifiers in AML. Hematol Oncol Clin North Am 25(6):1119–1133

    Article  PubMed  Google Scholar 

  29. Fong CY, Morison J, Dawson MA (2014) Epigenetics in the hematologic malignancies. Haematologica 99(12):1772–1783

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yun S, Vincelette ND, Abraham I, Robertson KD, Fernandez-Zapico ME, Patnaik MM (2016) Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: a systematic review of hypomethylating agents trials. Clin Epigenetics 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gallipoli P, Giotopoulos G, Huntly BJ (2015) Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia. Ther Adv Hematol 6(3):103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S, Mason CE, Melnick A (2016) Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet Dev 36:100–106

    Article  PubMed  PubMed Central  Google Scholar 

  33. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rampal R, Alkalin A, Madzo J, Vasanthakumar A, Pronier E, Patel J et al (2014) DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep 9(5):1841–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17(1):13–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T et al (2013) Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45(2):186–190

    Article  PubMed  Google Scholar 

  37. Van Vlierberghe P, Ambesi-Impiombato A, De Keersmaecker K, Hadler M, Paietta E, Tallman MS et al (2013) Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood 122(1):74–82

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97(20):1498–1506

    Article  CAS  PubMed  Google Scholar 

  39. Jones PA, Taylor SM, Mohandas T, Shapiro LJ (1982) Cell cycle-specific reactivation of an inactive X-chromosome locus by 5-azadeoxycytidine. Proc Natl Acad Sci U S A 79(4):1215–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nieto M, Samper E, Fraga MF, Gonzalez de Buitrago G, Esteller M, Serrano M (2004) The absence of p53 is critical for the induction of apoptosis by 5-aza-2′-deoxycytidine. Oncogene 23(3):735–743

    Article  CAS  PubMed  Google Scholar 

  41. Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91(25):11797–11801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557):1079–1082

    Article  PubMed  Google Scholar 

  43. DeZern AE (2015) Nine years without a new FDA-approved therapy for MDS: how can we break through the impasse? Hematology Am Soc Hematol Educ Program 2015:308–316

    PubMed  Google Scholar 

  44. Tellez CS, Grimes MJ, Picchi MA, Liu Y, March TH, Reed MD et al (2014) SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. Int J Cancer 135(9):2223–2231

    Article  CAS  PubMed  Google Scholar 

  45. Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Karbach J et al (2014) Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res 38(11):1332–1341

    Article  CAS  PubMed  Google Scholar 

  46. Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N (2015) Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol 9(9):1799–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kharfan-Dabaja MA (2015) Guadecitabine for AML and MDS: hype or hope? Lancet Oncol 16(9):1009–1011

    Article  PubMed  Google Scholar 

  48. Jueliger S, Lyons J, Cannito S, Pata I, Pata P, Shkolnaya M et al (2016) Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics 11:1–12

    Article  Google Scholar 

  49. Issa JP, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C et al (2015) Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol 16(9):1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Griffiths EA, Choy G, Redkar S, Taverna P, Azab M, Karpf AR (2013) SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs Future 38(8):535–543

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fang F, Munck J, Tang J, Taverna P, Wang Y, Miller DF et al (2014) The novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer. Clin Cancer Res 20(24):6504–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stein EM, Altman JK, Collins R, DeAngelo DJ, Fathi AT, Flinn I et al (2014) AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase I study in patients with IDH2 mutation positive advanced hematologic malignancies. Blood 124(21):115

    Google Scholar 

  53. Stein EM, Tallman MS (2015) Emerging therapeutic drugs for AML. Blood 125:2923–2932

    Article  Google Scholar 

  54. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  55. Takamatsu-Ichihara E, Kitabayashi I (2016) The roles of Polycomb group proteins in hematopoietic stem cells and hematological malignancies. Int J Hematol 103(6):634–642

    Article  CAS  PubMed  Google Scholar 

  56. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42(8):722–726

    Article  CAS  PubMed  Google Scholar 

  58. Kim KH, Roberts CW (2016) Targeting EZH2 in cancer. Nat Med 22(2):128–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al (2012) ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22(2):180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Inoue D, Kitaura J, Togami K, Nishimura K, Enomoto Y, Uchida T et al (2013) Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations. J Clin Invest 123(11):4627–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Beguelin W, Teater M, Gearhart MD, Calvo Fernandez MT, Goldstein RL, Cardenas MG et al (2016) EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell 30(2):197–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M et al (2010) A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 17(4):400–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cerchietti LC, Hatzi K, Caldas-Lopes E, Yang SN, Figueroa ME, Morin RD et al (2010) BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy. J Clin Invest 120(12):4569–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cardenas MG, Yu W, Beguelin W, Teater MR, Geng H, Goldstein RL et al (2016) Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma. J Clin Invest 126(9):3351–3362

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dupont T, Yang SN, Patel J, Hatzi K, Malik A, Tam W et al (2016) Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget 7(3):3520–3532

    Article  PubMed  Google Scholar 

  66. Moorman AV, Richards S, Harrison CJ (2002) Involvement of the MLL gene in T-lineage acute lymphoblastic leukemia. Blood 100(6):2273–2274

    Article  CAS  PubMed  Google Scholar 

  67. Neumann M, Heesch S, Schlee C, Schwartz S, Gokbuget N, Hoelzer D et al (2013) Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood 121(23):4749–4752

    Article  CAS  PubMed  Google Scholar 

  68. Yang W, Ernst P (2016) SET/MLL family proteins in hematopoiesis and leukemia. Int J Hematol 105:7–16

    Article  PubMed  Google Scholar 

  69. Nguyen AT, Taranova O, He J, Zhang Y (2011) DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117(25):6912–6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jo SY, Granowicz EM, Maillard I, Thomas D, Hess JL (2011) Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117(18):4759–4768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20(1):66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu W, Chory EJ, Wernimont AK, Tempel W, Scopton A, Federation A et al (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 3:1288

    Article  PubMed  Google Scholar 

  74. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104(47):18439–18444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Accari SL, Fisher PR (2015) Emerging roles of JmjC domain-containing proteins. Int Rev Cell Mol Biol 319:165–220

    Article  PubMed  Google Scholar 

  76. Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K et al (2012) Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 18(4):605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lokken AA, Zeleznik-Le NJ (2012) Breaking the LSD1/KDM1A addiction: therapeutic targeting of the epigenetic modifier in AML. Cancer Cell 21(4):451–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T et al (2011) Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 128(3):574–586

    Article  CAS  PubMed  Google Scholar 

  79. Berglund L, Bjorling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA et al (2008) A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics 7(10):2019–2027

    Article  CAS  PubMed  Google Scholar 

  80. Niebel D, Kirfel J, Janzen V, Holler T, Majores M, Gutgemann I (2014) Lysine-specific demethylase 1 (LSD1) in hematopoietic and lymphoid neoplasms. Blood 124(1):151–152

    Article  CAS  PubMed  Google Scholar 

  81. Melnick AM (2010) Epigenetics in AML. Best Pract Res Clin Haematol 23(4):463–468

    Article  CAS  PubMed  Google Scholar 

  82. Pan H, Jiang Y, Boi M, Tabbo F, Redmond D, Nie K et al (2015) Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 6:6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ferri E, Petosa C, McKenna CE (2016) Bromodomains: structure, function and pharmacology of inhibition. Biochem Pharmacol 106:1–18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimihito Cojin Kawabata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kawabata, K.C., Kitamura, T. (2017). DNA and Histone Methylation in Hematopoietic Malignancy. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics