Skip to main content

DNA Methylation and Dysregulation of miRNA in Cancer

Feedback Loop Between Dysregulated miRNAs and Epigenetic Pathways in Cancer

  • Chapter
  • First Online:
DNA and Histone Methylation as Cancer Targets

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The discovery of microRNAs (miRNAs) has resulted in major advancements in cancer research. miRNAs are small noncoding RNAs that function to fine tune the expression of protein coding/noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-depending manner. The unique characteristic function of miRNAs is to regulate RNA transcripts in human cells. Therefore, dysregulated expression of miRNAs can disrupt tightly regulated RNA networks in cancer cells. miRNAs play critical roles in various biological processes, and their dysregulation has been observed in several human diseases, including cancers.

Recent studies of cancer epigenome analysis have demonstrated that epigenetic mechanisms, including DNA methylation and histone modification, regulate the expression of a number of miRNAs, and conversely, these miRNAs control the expression of various epigenetic modulators, including DNA methyltransferases (DNMTs), histone deacetylases (HDACs), and polycomb group genes. When this complicated feedback loop between miRNAs and epigenetics is dysregulated by aberrant expression of miRNAs, normal physiological functions are disrupted, and as a result, several diseases occur, including cancer. That is, dysregulation of miRNAs can affect epigenetic alterations in cancer. The present review focuses on some tumor-suppressive miRNAs that have been shown to regulate epigenetic modulators in cancer; the functional roles of these miRNAs in epigenetics are described. Elucidation of the relationship between miRNA dysregulation and epigenetic alterations will lead to the discovery of new therapeutic strategies for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. PubMed PMID: 14744438. Epub 2004/01/28. eng.

    Article  CAS  PubMed  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) TheC. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. PubMed PMID: 8252621. Epub 1993/12/03. Eng

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. PubMed PMID: 19167326. Pubmed Central PMCID: PMC3794896. Epub 2009/01/27. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goto Y, Kurozumi A, Enokida H, Ichikawa T, Seki N (2015) Functional significance of aberrantly expressed microRNAs in prostate cancer. Int J Urol 22(3):242–252. PubMed PMID: 25599923. Epub 2015/01/21. eng

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Serra P, Esteller M (2012) DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 31(13):1609–1622. PubMed PMID: 21860412. Pubmed Central PMCID: PMC3325426. Epub 2011/08/24. Eng

    Article  CAS  PubMed  Google Scholar 

  6. Loginov VI, Rykov SV, Fridman MV, Braga EA (2015) Methylation of miRNA genes and oncogenesis. Biochemistry (Biokhimiia) 80(2):145–162. PubMed PMID: 25756530. Epub 2015/03/11. Eng

    Article  CAS  Google Scholar 

  7. Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799(10–12):694–701. PubMed PMID: 20493980. Epub 2010/05/25. Eng

    Article  CAS  PubMed  Google Scholar 

  8. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278(10):1598–1609. PubMed PMID: 21395977. Epub 2011/03/15. Eng

    Article  CAS  PubMed  Google Scholar 

  9. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159. PubMed PMID: 22351564. Pubmed Central PMCID: PMC3376845. Epub 2012/02/22. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kobayashi H, Tomari Y (2016) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta 1859(1):71–81. PubMed PMID: 26303205. Epub 2015/08/26. Eng

    Article  CAS  PubMed  Google Scholar 

  11. Curtis HJ, Sibley CR, Wood MJ (2012) Mirtrons, an emerging class of atypical miRNA. Wiley Interdiscip Rev RNA 3(5):617–632. PubMed PMID: 22733569. Epub 2012/06/27. Eng

    Article  CAS  PubMed  Google Scholar 

  12. Marks PA (2010) The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs 19(9):1049–1066. PubMed PMID: 20687783. Pubmed Central PMCID: PMC4077324. Epub 2010/08/07. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang N, Li X, Wu CW et al (2013) microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 32(42):5078–5088. PubMed PMID: 23208495. Epub 2012/12/05. eng

    Article  CAS  PubMed  Google Scholar 

  14. Gronroos E, Terentiev AA, Punga T, Ericsson J (2004) YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci U S A 101(33):12165–12170. PubMed PMID: 15295102. Pubmed Central PMCID: PMC514451. Epub 2004/08/06. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  15. Esposito F, Tornincasa M, Pallante P et al (2012) Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab 97(5):E710–E718. PubMed PMID: 22399519. Epub 2012/03/09. Eng

    Article  CAS  PubMed  Google Scholar 

  16. Volkel P, Dupret B, Le Bourhis X, Angrand PO (2015) Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res 7(2):175–193. PubMed PMID: 25901190. Pubmed Central PMCID: PMC4399085. Epub 2015/04/23. Eng

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato M, Goto Y, Matsushita R et al (2015) MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer. Int J Oncol 47(2):710–718. PubMed PMID: 26063484. Epub 2015/06/13. eng

    Article  CAS  PubMed  Google Scholar 

  18. Kurozumi A, Kato M, Goto Y et al (2016) Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma. Int J Oncol 48(5):1837–1846. PubMed PMID: 26983694. Pubmed Central PMCID: PMC4809659. Epub 2016/03/18. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukumoto I, Hanazawa T, Kinoshita T et al (2015) MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer 112(5):891–900. PubMed PMID: 25668004. Pubmed Central PMCID: PMC4453953. Epub 2015/02/11. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukumoto I, Kikkawa N, Matsushita R et al (2016) Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet 61(2):109–118. PubMed PMID: 26490187. Epub 2015/10/23. Eng

    Article  CAS  PubMed  Google Scholar 

  21. Lu J, He ML, Wang L et al (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71(1):225–233. PubMed PMID: 21199804. Epub 2011/01/05. eng

    Article  CAS  PubMed  Google Scholar 

  22. Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810. PubMed PMID: 17890317. Pubmed Central PMCID: PMC2000384. Epub 2007/09/25. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu H, Sun J, Shi C et al (2015) miR-29s inhibit the malignant behavior of U87MG glioblastoma cell line by targeting DNMT3A and 3B. Neurosci Lett 590:40–46. PubMed PMID: 25625222. Epub 2015/01/28. eng

    Article  CAS  PubMed  Google Scholar 

  24. Chen D, Guo W, Qiu Z et al (2015) MicroRNA-30d-5p inhibits tumour cell proliferation and motility by directly targeting CCNE2 in non-small cell lung cancer. Cancer Lett 362(2):208–217. PubMed PMID: 25843294. Epub 2015/04/07. Eng

    Article  CAS  PubMed  Google Scholar 

  25. Majid S, Dar AA, Saini S et al (2013) miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res 19(1):73–84. PubMed PMID: 23147995. Pubmed Central PMCID: PMC3910324. Epub 2012/11/14. Eng

    Article  CAS  PubMed  Google Scholar 

  26. Wang AM, Huang TT, Hsu KW et al (2014) Yin Yang 1 is a target of microRNA-34 family and contributes to gastric carcinogenesis. Oncotarget 5(13):5002–5016. PubMed PMID: 24970812. Pubmed Central PMCID: PMC4148117. Epub 2014/06/28. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goto Y, Kurozumi A, Nohata N et al (2016) The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget 7(37):59070–59086. PubMed PMID: 27487138. Epub 2016/08/04. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  28. Varambally S, Cao Q, Mani RS et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science (New York, NY) 12;322(5908):1695–1699. PubMed PMID: 19008416. Pubmed Central PMCID: PMC2684823. Epub 2008/11/15. Eng

    Article  Google Scholar 

  29. Yan F, Shen N, Pang J et al (2014) Restoration of miR-101 suppresses lung tumorigenesis through inhibition of DNMT3a-dependent DNA methylation. Cell Death Dis 5:e1413. PubMed PMID: 25210796. Pubmed Central PMCID: PMC4540207. Epub 2014/09/12. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsieh TH, Hsu CY, Tsai CF et al (2015) miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget 6(1):494–509. PubMed PMID: 25504437. Pubmed Central PMCID: PMC4381610. Epub 2014/12/17. eng

    Article  PubMed  Google Scholar 

  31. Zhu Z, Tang J, Wang J, Duan G, Zhou L, Zhou X (2016) MiR-138 acts as a tumor suppressor by targeting EZH2 and enhances cisplatin-induced apoptosis in osteosarcoma cells. PLoS One 11(3):e0150026. PubMed PMID: 27019355. Pubmed Central PMCID: PMC4809565. Epub 2016/03/29. eng

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li W, Jiang G, Zhou J et al (2014) Down-regulation of miR-140 induces EMT and promotes invasion by targeting slug in esophageal cancer. Cell Physiol Biochem 34(5):1466–1476. PubMed PMID: 23147995. Pubmed Central PMCID: PMC3910324. Epub 2012/11/14. Eng

    Article  CAS  PubMed  Google Scholar 

  33. Xiao Q, Huang L, Zhang Z et al (2017) Overexpression of miR-140 inhibits proliferation of osteosarcoma cells via suppression of histone deacetylase 4. Oncol Res 25(2):267–275. PubMed PMID: 27624383. Epub 2016/09/15. Eng

    Article  PubMed  Google Scholar 

  34. Yuan Y, Shen Y, Xue L, Fan H (2013) miR-140 suppresses tumor growth and metastasis of non-small cell lung cancer by targeting insulin-like growth factor 1 receptor. PLoS One 8(9):e73604. PubMed PMID: 23147995. Pubmed Central PMCID: PMC3910324. Epub 2012/11/14. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kojima S, Enokida H, Yoshino H et al (2014) The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet 59(2):78–87. PubMed PMID: 24284362. Epub 2013/11/29. eng

    Article  CAS  PubMed  Google Scholar 

  36. Kurozumi A, Goto Y, Okato A, Ichikawa T, Seki N (2017) Aberrantly expressed microRNAs in bladder cancer and renal cell carcinoma. J Hum Genet 62(1):49–56. PubMed PMID: 27357429. Epub 2016/07/01. Eng

    Article  CAS  PubMed  Google Scholar 

  37. Yoshino H, Enokida H, Itesako T et al (2013) Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci 104(12):1567–1574. PubMed PMID: 24033605. Epub 2013/09/17. eng

    Article  CAS  PubMed  Google Scholar 

  38. Su J, Liang H, Yao W et al (2014) MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9(12):e114420. PubMed PMID: 25474488. Pubmed Central PMCID: PMC4256231. Epub 2014/12/05. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ng EK, Tsang WP, Ng SS et al (2009) MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 101(4):699–706. PubMed PMID: 19638978. Pubmed Central PMCID: PMC2736825. Epub 2009/07/30. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xue G, Ren Z, Chen Y et al (2015) A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett 361(1):121–127. PubMed PMID: 25749421. Epub 2015/03/10. eng

    Article  CAS  PubMed  Google Scholar 

  41. Matsushita R, Yoshino H, Enokida H et al (2016) Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness. Oncotarget 7(19):28460–28487. PubMed PMID: 27072587. Epub 2016/04/14. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  42. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA (New York, NY) 14(5):872–877. PubMed PMID: 18367714. Pubmed Central PMCID: PMC2327368. Epub 2008/03/28. Eng

    Article  CAS  Google Scholar 

  43. Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology (Baltimore, MD) 51(3):881–890. PubMed PMID: 20146264. Pubmed Central PMCID: PMC3902044. Epub 2010/02/11. Eng

    CAS  Google Scholar 

  44. Huang J, Wang Y, Guo Y, Sun S (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology (Baltimore, MD) 52(1):60–70. PubMed PMID: 20578129. Epub 2010/06/26. Eng

    Article  CAS  Google Scholar 

  45. Wang H, Tao T, Yan W et al (2015) Upregulation of miR-181s reverses mesenchymal transition by targeting KPNA4 in glioblastoma. Sci Rep 5:13072. PubMed PMID: 26283154. Pubmed Central PMCID: PMC4539550. Epub 2015/08/19. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou WY, Chen JC, Jiao TT, Hui N, Qi X (2015) MicroRNA-181 targets Yin Yang 1 expression and inhibits cervical cancer progression. Mol Med Rep 11(6):4541–4546. PubMed PMID: 25672374. Epub 2015/02/13. eng

    Article  CAS  PubMed  Google Scholar 

  47. Lai TH, Ewald B, Zecevic A et al (2016) HDAC inhibition induces microRNA-182, which targets RAD51 and impairs HR repair to sensitize cells to sapacitabine in acute myelogenous leukemia. Clin Cancer Res 22(14):3537–3549. PubMed PMID: 26858310. Pubmed Central PMCID: PMC4947457. Epub 2016/02/10. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun J, Ji J, Huo G, Song Q, Zhang X (2015) miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol 8(5):4755–4763. PubMed PMID: 26191165. Pubmed Central PMCID: PMC4503037. Epub 2015/07/21. Eng

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Z, Tang H, Wang Z et al (2011) MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer 10:124. PubMed PMID: 23147995. Pubmed Central PMCID: PMC3910324. Epub 2012/11/14. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dimri M, Kang M, Dimri GP (2016) A miR-200c/141-BMI1 autoregulatory loop regulates oncogenic activity of BMI1 in cancer cells. Oncotarget 7(24):36220–36234. PubMed PMID: 27105531. Epub 2016/04/23. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu WR, Sun H, Zhang R et al (2016) Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1. Oncotarget 7(14):18684–18693. PubMed PMID: 26919246. Pubmed Central PMCID: PMC4951320. Epub 2016/02/27. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y (2010) miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer 127(5):1106–1114. PubMed PMID: 20020497. Epub 2009/12/19. eng

    Article  CAS  PubMed  Google Scholar 

  53. Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88(4):471–481. PubMed PMID: 9038338. Epub 1997/02/21. Eng

    Article  CAS  PubMed  Google Scholar 

  54. Tong D, Zhao L, He K et al (2016) MECP2 promotes the growth of gastric cancer cells by suppressing miR- 338-mediated antiproliferative effect. Oncotarget 7(23):34845–34859. PubMed PMID: 27166996. Epub 2016/05/12. Eng

    Google Scholar 

  55. Wu ZS, Wu Q, Wang CQ et al (2011) miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer 117(13):2842–2852. PubMed PMID: 21692045. Epub 2011/06/22. Eng

    Article  CAS  PubMed  Google Scholar 

  56. Shi L, Chen ZG, Wu LL et al (2014) miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev 15(23):10439–10444. PubMed PMID: 25556489. Epub 2015/01/06. Eng

    Article  PubMed  Google Scholar 

  57. Sun Y, Zhao X, Zhou Y, Hu Y (2012) miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep 28(4):1346–1352. PubMed PMID: 22895557. Epub 2012/08/17. Eng

    Article  CAS  PubMed  Google Scholar 

  58. Yu W, Zhang G, Lu B et al (2016) MiR-340 impedes the progression of laryngeal squamous cell carcinoma by targeting EZH2. Gene 577(2):193–201. PubMed PMID: 26656176. Epub 2015/12/15. eng

    Article  CAS  PubMed  Google Scholar 

  59. Grady WM, Parkin RK, Mitchell PS et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27):3880–3888. PubMed PMID: 18264139. Epub 2008/02/12. Eng

    Article  CAS  PubMed  Google Scholar 

  60. Wang H, Wu J, Meng X et al (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32(7):1033–1042. PubMed PMID: 21565830. Epub 2011/05/14. Eng

    Article  CAS  PubMed  Google Scholar 

  61. Jin Y, Peng D, Shen Y et al (2013) MicroRNA-376c inhibits cell proliferation and invasion in osteosarcoma by targeting to transforming growth factor-alpha. DNA Cell Biol 32(6):302–309. PubMed PMID: 23631646. Epub 2013/05/02. Eng

    Article  CAS  PubMed  Google Scholar 

  62. Jiang W, Tian Y, Jiang S, Liu S, Zhao X, Tian D (2016) MicroRNA-376c suppresses non-small-cell lung cancer cell growth and invasion by targeting LRH-1-mediated Wnt signaling pathway. Biochem Biophys Res Commun 473(4):980–986. PubMed PMID: 27049310. Epub 2016/04/07. Eng

    Article  CAS  PubMed  Google Scholar 

  63. Deng Y, Xiong Y, Liu Y (2016) miR-376c inhibits cervical cancer cell proliferation and invasion by targeting BMI1. Int J Exp Pathol 97(3):257–265. PubMed PMID: 27345009. Pubmed Central PMCID: PMC4960580. Epub 2016/06/28. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zehavi L, Avraham R, Barzilai A et al (2012) Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 11:44. PubMed PMID: 22747855. Pubmed Central PMCID: PMC3444916. Epub 2012/07/04. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Noonan EJ, Place RF, Pookot D et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14):1714–1724. PubMed PMID: 19252524. Epub 2009/03/03. eng

    Article  CAS  PubMed  Google Scholar 

  66. Jeon HS, Lee SY, Lee EJ et al (2012) Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer (Amsterdam, Netherlands) 76(2):171–176. PubMed PMID: 22078727. Epub 2011/11/15. Eng

    Article  Google Scholar 

  67. Liu L, Chen K, Wu J et al (2013) Downregulation of miR-452 promotes stem-like traits and tumorigenicity of gliomas. Clin Cancer Res 19(13):3429–3438. PubMed PMID: 23695168. Pubmed Central PMCID: PMC3725315. Epub 2013/05/23. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. He Z, Xia Y, Pan C et al (2015) Up-regulation of MiR-452 inhibits metastasis of non-small cell lung cancer by regulating BMI1. Cell Physiol Biochem 37(1):387–398. PubMed PMID: 26316085. Epub 2015/09/01. eng

    Article  CAS  PubMed  Google Scholar 

  69. Goto Y, Kojima S, Kurozumi A et al (2016) Regulation of E3 ubiquitin ligase-1 (WWP1) by microRNA-452 inhibits cancer cell migration and invasion in prostate cancer. Br J Cancer 114(10):1135–1144. PubMed PMID: 27070713. Pubmed Central PMCID: PMC4865980. Epub 2016/04/14. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun Y, Hu L, Zheng H et al (2015) MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol 235(1):25–36. PubMed PMID: 25230372. Pubmed Central PMCID: PMC4268369. Epub 2014/09/18. Eng

    Article  CAS  PubMed  Google Scholar 

  71. Wen SY, Lin Y, Yu YQ et al (2015) miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene 34(6):717–725. PubMed PMID: 24608427. Epub 2014/03/13. Eng

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Lin C, Liao G et al (2015) MicroRNA-506 suppresses tumor proliferation and metastasis in colon cancer by directly targeting the oncogene EZH2. Oncotarget 6(32):32586–32601. PubMed PMID: 26452129. Pubmed Central PMCID: PMC4741714. Epub 2015/10/10. eng

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jiang B, Li Z, Zhang W et al (2014) miR-874 Inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. J Gastroenterol 49(6):1011–1025. PubMed PMID: 23800944. Epub 2013/06/27. Eng

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Tang J, Zhi X et al (2015) miR-874 functions as a tumor suppressor by inhibiting angiogenesis through STAT3/VEGF-A pathway in gastric cancer. Oncotarget 6(3):1605–1617. PubMed PMID: 25596740. Pubmed Central PMCID: PMC4359318. Epub 2015/01/19. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  75. Han J, Liu Z, Wang N, Pan W (2016) MicroRNA-874 inhibits growth, induces apoptosis and reverses chemoresistance in colorectal cancer by targeting X-linked inhibitor of apoptosis protein. Oncol Rep 36(1):542–550. PubMed PMID: 27221209. Epub 2016/05/26. Eng

    Article  CAS  PubMed  Google Scholar 

  76. Zhang LQ, Sun SL, Li WY et al (2015) Decreased expression of tumor suppressive miR-874 and its clinical significance in human osteosarcoma. Genet Mol Res 14(4):18315–18324. PubMed PMID: 26782479. Epub 2016/01/20. Eng

    Article  CAS  PubMed  Google Scholar 

  77. Nohata N, Hanazawa T, Kikkawa N et al (2011) Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br J Cancer 105(6):833–841. PubMed PMID: 21847129. Pubmed Central PMCID: PMC3171017. Epub 2011/08/19. Eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nohata N, Hanazawa T, Kinoshita T et al (2013) Tumour-suppressive microRNA-874 contributes to cell proliferation through targeting of histone deacetylase 1 in head and neck squamous cell carcinoma. Br J Cancer 108(8):1648–1658. PubMed PMID: 23558898. Pubmed Central PMCID: PMC3668462. Epub 2013/04/06. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiko Seki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kurozumi, A., Goto, Y., Okato, A., Seki, N. (2017). DNA Methylation and Dysregulation of miRNA in Cancer. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics