Skip to main content

Unrolled Hardware Architectures for Polar Decoders

  • Chapter
  • First Online:

Abstract

In this chapter, we demonstrate that polar decoders can achieve extremely high throughput values and retain moderate complexity. We present a family of architectures for hardware polar decoders using a reduced-complexity successive-cancellation decoding algorithm that employ unrolling. The resulting fully-unrolled architectures are capable of achieving a coded throughput in excess 400 Gbps and 1 Tbps on an FPGA or an ASIC , respectively—two to three orders of magnitude greater than current state-of-the-art polar decoders—while maintaining a competitive energy efficiency of 6.9 pJ/bit on ASIC . Moreover, the proposed architectures are flexible in a way that makes it possible to explore the trade-off between area, throughput and energy efficiency . We present the associated results for a range of pipeline depths, and code lengths and rates. We also discuss how the throughput and complexity of decoders are effected when implemented for an I/O-bound system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Altera: Meeting the performance and power imperative of the zettabyte era with generation 10. White Paper (2013)

    Google Scholar 

  2. Dizdar, O., Arıkan, E.: A high-throughput energy-efficient implementation of successive cancellation decoder for polar codes using combinational logic. IEEE Trans. Circuits Syst. I 63(3), 436–447 (2016). DOI 10.1109/TCSI.2016.2525020

    Article  MathSciNet  Google Scholar 

  3. Giard, P., Balatsoukas-Stimming, A., Sarkis, G., Thibeault, C., Gross, W.J.: Fast low-complexity decoders for low-rate polar codes. Springer J. Signal Process. Syst. (2016). DOI 10.1007/s11265-016-1173-y

    Google Scholar 

  4. Giard, P., Sarkis, G., Thibeault, C., Gross, W.J.: 237 Gbit/s unrolled hardware polar decoder. IET Electron. Lett. 51(10), 762–763 (2015). DOI 10.1049/el.2014.4432

    Article  Google Scholar 

  5. Giard, P., Sarkis, G., Thibeault, C., Gross, W.J.: A 638 Mbps low-complexity rate 1/2 polar decoder on FPGAs. In: IEEE Int. Workshop on Signal Process. Syst. (SiPS), pp. 1–6 (2015). DOI 10.1109/ SiPS.2015.7345007

    Google Scholar 

  6. Karjalainen, J., Nekovee, M., Benn, H., Kim, W., Park, J., Sungsoo, H.: Challenges and opportunities of mm-wave communication in 5G networks. In: Int. Conf. on Cognitive Radio Oriented Wireless Netw. and Commun. (CROWNCOM), pp. 372–376 (2014). DOI 10.4108/icst. crowncom.2014.255604

    Google Scholar 

  7. Leroux, C., Raymond, A., Sarkis, G., Gross, W.: A semi-parallel successive-cancellation decoder for polar codes. IEEE Trans. Signal Process. 61(2), 289–299 (2013). DOI 10.1109/TSP.2012.2223693

    Article  MathSciNet  Google Scholar 

  8. Li, Y., Alhussien, H., Haratsch, E., Jiang, A.: A study of polar codes for MLC NAND flash memories. In: Int. Conf. on Comput., Netw. and Commun. (ICNC), pp. 608–612 (2015). DOI 10.1109/ICCNC.2015. 7069414

    Google Scholar 

  9. Miloslavskaya, V.: Shortened polar codes. IEEE Trans. Inf. Theory 61(9), 4852–4865 (2015). DOI 10.1109/TIT.2015.2453312

    Article  MathSciNet  MATH  Google Scholar 

  10. Mishra, A., Raymond, A., Amaru, L., Sarkis, G., Leroux, C., Meinerzhagen, P., Burg, A., Gross, W.: A successive cancellation decoder ASIC for a 1024-bit polar code in 180nm CMOS. In: IEEE Asian Solid State Circuits Conf. (A-SSCC), pp. 205–208 (2012). DOI 10.1109/IPEC. 2012.6522661

    Google Scholar 

  11. Monserrat, J.F., Mange, G., Braun, V., Tullberg, H., Zimmermann, G., Bulakci, Ö.: METIS research advances towards the 5G mobile and wireless system definition. EURASIP J. Wireless Commun. Netw. 2015(1), 1–16 (2015). DOI 10.1186/s13638-015-0302-9

    Article  Google Scholar 

  12. Pamuk, A., Arıkan, E.: A two phase successive cancellation decoder architecture for polar codes. In: IEEE Int. Symp. on Inf. Theory (ISIT), pp. 1–5 (2013). DOI 10.1109/ISIT.2013.6620368

    Google Scholar 

  13. Park, Y.S., Tao, Y., Sun, S., Zhang, Z.: A 4.68Gb/s belief propagation polar decoder with bit-splitting register file. In: Symp. on VLSI Circ. Dig. of Tech. Papers, pp. 1–2 (2014). DOI 10.1109/VLSIC.2014.6858413

    Google Scholar 

  14. Raymond, A.J., Gross, W.J.: Scalable successive-cancellation hardware decoder for polar codes. In: IEEE Glob. Conf. on Signal and Inf. Process. (GlobalSIP), pp. 1282–1285 (2013). DOI 10.1109/GlobalSIP. 2013.6737143

    Google Scholar 

  15. Roh, W.: 5G mobile communications for 2020 and beyond - vision and key enabling technologies. IEEE Wireless Commun. and Netw. Conf. (WCNC) (2014)

    Google Scholar 

  16. Sarkis, G., Giard, P., Thibeault, C., Gross, W.J.: Autogenerating software polar decoders. In: IEEE Global Conf. on Signal and Inf. Process. (GlobalSIP), pp. 6–10 (2014). DOI 10.1109/GlobalSIP.2014. 7032067

    Google Scholar 

  17. Sarkis, G., Giard, P., Vardy, A., Thibeault, C., Gross, W.J.: Fast polar decoders: Algorithm and implementation. IEEE J. Sel. Areas Commun. 32(5), 946–957 (2014). DOI 10.1109/JSAC.2014.140514

    Article  Google Scholar 

  18. Sarkis, G., Gross, W.J.: Increasing the throughput of polar decoders. IEEE Commun. Lett. 17(4), 725–728 (2013). DOI 10.1109/LCOMM. 2013.021213.121633

    Article  Google Scholar 

  19. Schläfer, P., Wehn, N., Alles, M., Lehnigk-Emden, T.: A new dimension of parallelism in ultra high throughput LDPC decoding. In: IEEE Workshop on Signal Process. Syst. (SiPS), pp. 153–158 (2013). DOI 10. 1109/SiPS.2013.6674497

    Google Scholar 

  20. Wang, R., Liu, R.: A novel puncturing scheme for polar codes. IEEE Commun. Lett. 18(12), 2081–2084 (2014). DOI 10.1109/LCOMM.2014. 2364845

    Article  Google Scholar 

  21. Wehn, N., Scholl, S., Schläfer, P., Lehnigk-Emden, T., Alles, M.: Challenges and limitations for very high throughput decoder architectures for soft-decoding. In: C. Chavet, P. Coussy (eds.) Advanced Hardware Design for Error Correcting Codes, pp. 7–31. Springer International Publishing (2015). DOI 10.1007/978-3-319-10569-7_2

  22. Xilinx: UltraScale architecture and product overview. Product Specification (2014)

    Google Scholar 

  23. Yuan, B., Parhi, K.: Low-latency successive-cancellation polar decoder architectures using 2-bit decoding. IEEE Trans. Circuits Syst. I 61(4), 1241–1254 (2014). DOI 10.1109/TCSI.2013.2283779

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Giard, P., Thibeault, C., Gross, W.J. (2017). Unrolled Hardware Architectures for Polar Decoders. In: High-Speed Decoders for Polar Codes. Springer, Cham. https://doi.org/10.1007/978-3-319-59782-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59782-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59781-2

  • Online ISBN: 978-3-319-59782-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics