Skip to main content

On Finding the Optimal BDD Relaxation

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2017)

Abstract

This paper presents an optimization model for identifying limited-width relaxed binary decision diagrams (BDDs) with tightest possible relaxation bounds. The model developed is a network design model and is used to identify which nodes and arcs should be in a relaxed BDD so that the objective function bound is as close to the optimal value as possible. The model is presented specifically for the 0–1 knapsack problem, but can be extended to other problem classes that have been investigated in the stream of research on using decision diagrams for combinatorial optimization problems. Preliminary experimental results indicate that the bounds provided by the relaxed BDDs are far superior to the bounds achieved by relaxed BDDs constructed via previously published compilation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 27, 509–516 (1978)

    Article  MATH  Google Scholar 

  2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_11. http://dx.doi.org/10.1007/978-3-540-74970-7_11

    Chapter  Google Scholar 

  3. Behle, M.: On threshold BDDs and the optimal variable ordering problem. J. Comb. Optim. 16(2), 107–118 (2007). http://dx.doi.org/10.1007/s10878-007-9123-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergman, D., Cire, A.A., van Hoeve, W.J.: MDD propagation for sequence constraints. J. Artif. Intell. Res. 50, 697–722 (2014). http://dx.doi.org/10.1613/jair.4199

    MathSciNet  MATH  Google Scholar 

  5. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_3

    Chapter  Google Scholar 

  6. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds from binary decision diagrams. INFORMS J. Comput. 26(2), 253–268 (2014). http://dx.doi.org/10.1287/ijoc.2013.0561

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  9. Bergman, D., Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21311-3_5. http://dx.doi.org/10.1007/978-3-642-21311-3_5

    Chapter  Google Scholar 

  10. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 4th edn. Athena Scientific, Belmont (2012)

    MATH  Google Scholar 

  11. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  12. Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision diagrams. ACM Comput. Surv. 24, 293–318 (1992)

    Article  Google Scholar 

  13. Drechsler, R., Drechsler, N., Günther, W.: Fast exact minimization of BDD’s. IEEE Trans. CAD Integr. Circ. Syst. 19(3), 384–389 (2000). http://dx.doi.org/10.1109/43.833206

    Article  Google Scholar 

  14. Felt, E., York, G., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Dynamic variable reordering for BDD minimization. In: Proceedings of the European Design Automation Conference 1993, EURO-DAC 1993 with EURO-VHDL 1993, Hamburg, Germany, 20–24 September 1993. pp. 130–135. IEEE Computer Society (1993). http://dx.doi.org/10.1109/EURDAC.1993.410627

  15. Gogate, V., Domingos, P.M.: Approximation by quantization. CoRR abs/1202.3723 (2012). http://arxiv.org/abs/1202.3723

  16. Gogate, V., Domingos, P.M.: Structured message passing. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA, 11–15 August 2013 (2013). https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2386&proceeding_id=29

  17. Günther, W., Drechsler, R.: Linear transformations and exact minimization of BDDs. In: 8th Great Lakes Symposium on VLSI (GLS-VLSI 1998), 19–21 February 1998, Lafayette, LA, USA, pp. 325–330. IEEE Computer Society (1998). http://dx.doi.org/10.1109/GLSV.1998.665287

  18. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_30

    Chapter  Google Scholar 

  19. Hoda, S., Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15396-9_23. http://dl.acm.org/citation.cfm?id=1886008.1886034

    Chapter  Google Scholar 

  20. Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488 (2014). http://www.sciencedirect.com/science/article/pii/S0377221713006474

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38, 985–999 (1959)

    Article  MathSciNet  Google Scholar 

  22. Shiple, T.R., Hojati, R., Sangiovanni-Vincentelli, A.L., Brayton, R.K.: Heuristic minimization of BDDs using don’t cares. In: DAC, pp. 225–231 (1994). http://doi.acm.org/10.1145/196244.196360

  23. Soeken, M., Große, D., Chandrasekharan, A., Drechsler, R.: BDD minimization for approximate computing. In: 21st Asia and South Pacific Design Automation Conference, ASP-DAC 2016, Macao, Macao, 25–28 January 2016, pp. 474–479. IEEE (2016). http://dx.doi.org/10.1109/ASPDAC.2016.7428057

  24. St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: approximate policy construction using decision diagrams. In: Proceedings of Conference on Neural Information Processing Systems, pp. 1089–1095 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Augusto Cire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bergman, D., Cire, A.A. (2017). On Finding the Optimal BDD Relaxation. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics