Skip to main content

A Multi-stage Simulated Annealing Algorithm for the Torpedo Scheduling Problem

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2017)

Abstract

In production plants complex chains of processes need to be scheduled in an efficient way to minimize time and cost and maximize productivity. The torpedo scheduling problem that deals with optimizing the transport of hot metal in a steel production plant was proposed as the problem for the 2016 ACP (Association for Constraint Programming) challenge. This paper presents a new approach utilizing a multi-stage simulated annealing process adapted for the provided lexicographic evaluation function. It relies on two rounds of simulated annealing each using a specific objective function tailored for the corresponding part of the evaluation goals with an emphasis on efficient moves. The proposed algorithm was ranked first (ex aequo) in the 2016 ACP challenge and found the best known solutions for all provided instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cp2016.a4cp.org/program/acp-challenge-app/instance.

References

  1. Bent, R., Van Hentenryck, P.: A two-stage hybrid local search for the vehicle routing problem with time windows. Transp. Sci. 38(4), 515–530 (2004)

    Article  Google Scholar 

  2. Deng, M., Inoue, A., Kawakami, S.: Optimal path planning for material and products transfer in steel works using ACO. In: The 2011 International Conference on Advanced Mechatronic Systems, pp. 47–50. IEEE (2011)

    Google Scholar 

  3. Dowsland, K.A., Thompson, J.M.: Simulated annealing. In: Rozenberg, G., Bck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 1623–1655. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Geiger, M.J.: Optimale Torpedo-Einsatzplanung - Analyse und Lösung eines Ablaufplanungsproblems der Stahlindustrie. In: Entscheidungsunterstützung in Theorie und Praxis - Tagungsband des gemeinsamen Workshops der GOR-Arbeitsgruppen “Entscheidungstheorie und -praxis”, “Fuzzy Systeme, Neuronale Netze und Künstliche Intelligenz” sowie “OR im Umweltschutz” am 10. und 11. März 2016 in Magdeburg. Springer (in press)

    Google Scholar 

  5. Homberger, J., Gehring, H.: Two evolutionary metaheuristics for the vehicle routing problem with time windows. INFOR: Inf. Syst. Oper. Res. 37(3), 297–318 (1999)

    Google Scholar 

  6. Huang, H., Chai, T., Luo, X., Zheng, B., Wang, H.: Two-stage method and application for molten iron scheduling problem between iron-making plants and steel-making plants. IFAC Proc. Volumes 44(1), 9476–9481 (2011)

    Article  Google Scholar 

  7. Kikuchi, J., Konishi, M., Imai, J.: Transfer planning of molten metals in steel worksby decentralized agent. Memoirs Fac. Eng. Okayama Univ. 42(1), 60–70 (2008)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, J., Pan, Q., Duan, P.: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping. IEEE Trans. Cybern. 46(6), 1311–1324 (2016)

    Article  Google Scholar 

  10. Liu, Y.Y., Wang, G.S.: The mix integer programming model for torpedo car scheduling in iron and steel industry. In: International Conference on Computer Information Systems and Industrial Applications, pp. 731–734. Atlantis Press (2015)

    Google Scholar 

  11. Pham, D., Karaboga, D.: Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. Springer Science & Business Media, London (2012)

    MATH  Google Scholar 

  12. Schaus, P., Dejemeppe, C., Mouthuy, S., Mouthuy, F.-X., Allouche, D., Zytnicki, M., Pralet, C., Barnier, N.: The torpedo scheduling problem: description (2016). http://cp2016.a4cp.org/program/acp-challenge/problem.html. Accessed: 02 Feb 2017

  13. Tang, L., Wang, G., Liu, J.: A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry. Comput. Oper. Res. 34(10), 3001–3015 (2007)

    Article  MATH  Google Scholar 

  14. Tang, L., Zhao, Y., Liu, J.: An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans. Evol. Comput. 18(2), 209–225 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF): P24814-N23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Kletzander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kletzander, L., Musliu, N. (2017). A Multi-stage Simulated Annealing Algorithm for the Torpedo Scheduling Problem. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics