Advertisement

Spatial Resolution of EEG Source Reconstruction in Assessing Brain Connectivity Analysis

  • Jorge Ivan Padilla-BuriticáEmail author
  • J. D. Martínez-Vargas
  • A. Suárez-Ruiz
  • J. M. Ferrandez
  • G. Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)

Abstract

Brain connectivity analysis has emerged as a tool to associate activity generated in diverse brain areas, making possible the integration of functionally specialized brain regions in networks. However, estimation of the areas with relevant activity is well influenced by the applied brain mapping methods. This paper carries out the comparison of three reconstruction principles that differ in the way the prior covariance is adjusted, including its generalization through multiple and sparse spatial priors. To cluster the locations with significant brain activity (regions of interest), we select the most powerful areas, for which the functional connectivity is measured by the coherence and Kullback-Liebler divergence. From the obtained results on simulated and real-world EEG data, both measures show that the mapping method that includes Multiple Sparse Priors allows improving the connectivity accuracy regardless the used measure for all tested values of added noise.

Keywords

Connectivity Analysis Connectivity Measure Source Covariance Active Dipole Lead Field Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the research project 11974454838 founded by COLCIENCIAS. J.I. Padilla-Buriticá is founded by Programa nacional de becas de doctorado, convocatoria 647 (2014).

References

  1. 1.
    Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U., Preissl, H.: Source reconstruction accuracy of MEG and EEG Bayesian inversion approaches. PLoS ONE 7(12), 51985 (2012)CrossRefGoogle Scholar
  2. 2.
    Brier, M.R., Thomas, J.B., Fagan, A.M., Hassenstab, J., Holtzman, D.M., Benzinger, T.L., Morris, J.C., Ances, B.M.: Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol. Aging 35(4), 757–768 (2014)CrossRefGoogle Scholar
  3. 3.
    Brookes, M.J., O’neill, G.C., Hall, E.L., Woolrich, M.W., Baker, A., Palazzo Corner, S., Robson, S.E., Morris, P.G., Barnes, G.R.: Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity. NeuroImage 91, 282–299 (2014)CrossRefGoogle Scholar
  4. 4.
    Cho, J.-H., Vorwerk, J., Wolters, C.H., Knösche, T.R.: Influence of the head model on EEG and MEG source connectivity analyses. Neuroimage 110, 60–77 (2015)CrossRefGoogle Scholar
  5. 5.
    Costa, F., Batatia, H., Oberlin, T., D’Giano, C., Tourneret, J.-Y.: Bayesian EEG source localization using a structured sparsity prior. NeuroImage 144, 142–152 (2017)CrossRefGoogle Scholar
  6. 6.
    Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J.: Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39(3), 1104–1120 (2008)CrossRefGoogle Scholar
  7. 7.
    Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 5(1), 25 (2008)Google Scholar
  8. 8.
    Greenblatt, R.E., Pflieger, M.E., Ossadtchi, A.E.: Connectivity measures applied to human brain electrophysiological data. J. Neurosci. Methods 207(1), 1–16 (2012)CrossRefGoogle Scholar
  9. 9.
    Hassan, M., Dufor, O., Merlet, I., Berrou, C., Wendling, F.: EEG source connectivity analysis: from dense array recordings to brain networks. PLoS One 9(8), 105041 (2014)CrossRefGoogle Scholar
  10. 10.
    Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 76 (2011)CrossRefGoogle Scholar
  11. 11.
    Nummenmaa, A., Auranen, T., Hämäläinen, M.S., Jääskeläinen, I.P., Lampinen, J., Sams, M., Vehtari, A.: Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35(2), 669–685 (2007)CrossRefGoogle Scholar
  12. 12.
    Padilla-Buritica, J.I., Martinez-Vargas, J.D., Castellanos-Dominguez, G.: Emotion discrimination using spatially compact regions of interest extracted from imaging EEG activity. Front. Comput. Neurosci. 10 (2016)Google Scholar
  13. 13.
    Pascual-Marqui, R.D., Esslen, M., Kochi, K., Lehmann, D., et al.: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24(Suppl C), 91–95 (2002)Google Scholar
  14. 14.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  15. 15.
    Schoffelen, J.-M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30(6), 1857–1865 (2009)CrossRefGoogle Scholar
  16. 16.
    Sheline, Y.I., Raichle, M.E.: Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 74(5), 340–347 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jorge Ivan Padilla-Buriticá
    • 1
    • 2
    Email author
  • J. D. Martínez-Vargas
    • 1
  • A. Suárez-Ruiz
    • 1
  • J. M. Ferrandez
    • 2
  • G. Castellanos-Dominguez
    • 1
  1. 1.Universidad Nacional de ColombiaManizalesColombia
  2. 2.Universidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations