Skip to main content

A Mobile Brain-Computer Interface for Clinical Applications: From the Lab to the Ubiquity

  • Conference paper
  • First Online:
Book cover Biomedical Applications Based on Natural and Artificial Computing (IWINAC 2017)

Abstract

Technological advances during the last years have contributed to the development of wireless and low-cost electroencephalography (EEG) acquisition systems and mobile brain-computer interface (mBCI) applications. The most popular applications are general-purpose (e.g., games, sports, daily-life, etc.). However, clinical usefulness of mBCIs is still an open question. In this paper we present a low-cost mobile BCI application and demonstrate its potential utility in clinical practice. In particular, we conducted a study in which visual evoked potentials (VEP) of two subjects were analyzed using our mBCI application, under different conditions: inside a laboratory, walking and traveling in a car. The results show that the features of our system (level of synchronization, robustness and signal quality) are acceptable for the demanding standard required for the electrophysiological evaluation of vision. In addition, the mobile recording and cloud computing of VEPs offers a number of advantages over traditional in-lab systems. The presented mobile application could be used for visual impairment screening, for ubiquitous, massive and low-cost evaluation of vision, and as ambulatory diagnostic tool in rural or undeveloped areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woods, A.M., Nowostawski, M., Franz, E.A., Purvis, M.: Parkinson’s disease and essential tremor classification on mobile device. Pervasive Mob. Comput. 13, 1–12 (2014)

    Article  Google Scholar 

  2. Maxhuni, A., Munoz-Melendez, A., Osmani, V., Perez, H., Mayora, O., Morales, E.F.: Classification of bipolar disorder episodes based on analysis of voice and motor activity of patients. Pervasive Mob. Comput. 31, 50–66 (2016)

    Article  Google Scholar 

  3. Okoshi, T., Nozaki, H., Nakazawa, J., Tokuda, H., Ramos, J., Dey, A.K.: Towards attention-aware adaptive notification on smart phones. Pervasive Mob. Comput. 26, 17–34 (2016)

    Article  Google Scholar 

  4. Ubeyli, E.D., Güler, N.F.: Theory and applications of telemedicine. J. Med. Syst. 26(3), 199–220 (2002)

    Article  Google Scholar 

  5. Black, A.D., Car, J., Pagliari, C., Anandan, C., Cresswell, K., Bokun, T., McKinstry, B., Procter, R., Majeed, A., Sheikh, A.: The impact of ehealth on the quality and safety of health care: a systematic overview. PLoS Med. 8(1), 1–16 (2011)

    Article  Google Scholar 

  6. Lorenz, A., Oppermann, R.: Mobile health monitoring for the elderly: designing for diversity. Pervasive Mob. Comput. 5(5), 478–495 (2009)

    Article  Google Scholar 

  7. Minguillon, J., Lopez-Gordo, M.A., Pelayo, F.: Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed. Sig. Process. Control 31, 407–418 (2017)

    Article  Google Scholar 

  8. Valenzuela-valdés, J.F., López, M.A., Padilla, P., Padilla, J.L., Minguillon, J.: Human neuro-activity for securing body area networks: application of brain-computer interfaces to people-centric internet of things. IEEE Commun. Mag. 55(2), 62–67 (2017)

    Article  Google Scholar 

  9. Lopez-Gordo, M.A., Pelayo Valle, F.: Brain-computer interface as networking entity in body area networks. In: Aguayo-Torres, M.C., Gómez, G., Poncela, J. (eds.) WWIC 2015. LNCS, vol. 9071, pp. 274–285. Springer, Cham (2015). doi:10.1007/978-3-319-22572-2_20

    Chapter  Google Scholar 

  10. Liao, L., Chen, C., Wang, I.: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. NeuroEng. Rehabil. 9(5) (2012)

    Google Scholar 

  11. Park, J.L., Fairweather, M.M., Donaldson, D.I.: Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 52, 117–130 (2015)

    Article  Google Scholar 

  12. Wang, Y., Wang, Y., Jung, T.: A cell-phone-based braincomputer interface for communication in daily life. J. Neural Eng. (2011)

    Google Scholar 

  13. Brennan, C., McCullagh, P., Lightbody, G., Galway, L., Feuser, D., González, J.L., Martin, S.: Accessing tele-services using a hybrid BCI approach. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 110–123. Springer, Cham (2015). doi:10.1007/978-3-319-19258-1_10

    Chapter  Google Scholar 

  14. Mihajlovi, V., Grundlehner, B., Vullers, R., Penders, J.: Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J. Biomed. Health Inf. 19(1), 6–21 (2015)

    Article  Google Scholar 

  15. Lin, C., Lin, F., Chen, S.: EEG-based brain-computer interface for smart living environmental auto-adjustment. J. Med. Biol. Eng. 30(4), 237–245 (2010)

    Article  Google Scholar 

  16. Lin, C., Chang, C., Lin, B.: A real-time wireless braincomputer interface system for drowsiness detection. Biomed. Circ. Syst. IEEE Trans. 4(4), 214–222 (2010)

    Article  MathSciNet  Google Scholar 

  17. Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., Dutoit, T.: Performance of the Emotiv Epoc headset for P300-based applications. Biomed. Eng. Online 12(1), 56 (2013)

    Article  Google Scholar 

  18. Odom, J.V., Bach, M., Brigell, M., Holder, G.E., McCulloch, D.L., Mizota, A., Tormene, A.P.: ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. 133(1), 1–9 (2016)

    Article  Google Scholar 

  19. Brecelj, J.: A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials 84(3), 209–218 (1992)

    Article  Google Scholar 

  20. Nightingale, S., Mitchell, K.W., Howe, J.W.: Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J. Neurol. Neurosurg. Psychiatry 49, 1280–1287 (1986)

    Article  Google Scholar 

  21. Frederiksen, J.L., Larsson, H.B.W., OlesenI, J., Stigsby, B.: MRI, VEP, SEP and biothesiometry suggest monosymptomatic acute optic neuritis to be a first manifestation of multiple sclerosis. Acta Neurol. Scand. 83, 343–350 (1991)

    Article  Google Scholar 

  22. McCulloch, D.L., Skarf, B.: Pattern reversal visual evoked potentials following early treatment of unilateral, congenital cataract. Arch. Ophthalmol. 112, 510 (1994)

    Article  Google Scholar 

  23. Folk, J.C., Thompson, H.S., Han, D.P., Brown, C.K.: Visual function abnormalities in central serous retinopathy. Arch. Ophthalmol. 102, 1299–1302 (1984)

    Article  Google Scholar 

  24. Hood, D.C., Greenstein, V.C.: Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog. Retinal Eye Res. 22(2), 201–251 (2003)

    Article  Google Scholar 

  25. Carroll, W.M., Mastaglia, F.L.: Leber’s optic neuropathy: a clinical and visual evoked potential study of affected and asymptomatic members of a six generation family. Brain: J. Neurol. 102, 559–580 (1979)

    Article  Google Scholar 

  26. Julkunen, L., Tenovuo, O., Vorobyev, V., Hiltunen, J., Teräs, M., Jääskeläinen, S.K., Hämäläinen, H.: Functional brain imaging, clinical and neurophysiological outcome of visual rehabilitation in a chronic stroke patient. Restorative Neurol. Neurosci. 24(2), 123–132 (2006)

    Google Scholar 

  27. Van den Bruel, A., Gailly, J., Hulstaert, F., Devriese, S., Eyssen, M.: The value of EEG, evoked potentials in clinical practice, Good Clinical Practice (GCP). Brussel: Belgian Health Care Knowledge Centre (KCE), KCE report 109C, pp. 1–138 (2009)

    Google Scholar 

  28. Evans, A.B.: Clinical utility of evoked potentials. Medscape, 1–28 (2014)

    Google Scholar 

  29. Brigell, M., Kaufman, D.I., Bobak, P., Beydoun, A.: The pattern visual evoked potential. A multicenter study using standardized techniques. Ophthalmic Lit. 48(4), 308 (1995)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Nicolo Association for the R+D in Neurotechnologies for disability, the Ministry of Economy and Competitiveness DPI2015-69098-REDT, the research project P11-TIC-7983 of Junta of Andalucia (Spain), and the Spanish National Grant TIN2015-67020-P, co-financed by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Minguillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Minguillon, J., Lopez-Gordo, M.A., Morillas, C., Pelayo, F. (2017). A Mobile Brain-Computer Interface for Clinical Applications: From the Lab to the Ubiquity. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59773-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59772-0

  • Online ISBN: 978-3-319-59773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics