A Mobile Brain-Computer Interface for Clinical Applications: From the Lab to the Ubiquity

  • Jesus MinguillonEmail author
  • Miguel Angel Lopez-Gordo
  • Christian Morillas
  • Francisco Pelayo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)


Technological advances during the last years have contributed to the development of wireless and low-cost electroencephalography (EEG) acquisition systems and mobile brain-computer interface (mBCI) applications. The most popular applications are general-purpose (e.g., games, sports, daily-life, etc.). However, clinical usefulness of mBCIs is still an open question. In this paper we present a low-cost mobile BCI application and demonstrate its potential utility in clinical practice. In particular, we conducted a study in which visual evoked potentials (VEP) of two subjects were analyzed using our mBCI application, under different conditions: inside a laboratory, walking and traveling in a car. The results show that the features of our system (level of synchronization, robustness and signal quality) are acceptable for the demanding standard required for the electrophysiological evaluation of vision. In addition, the mobile recording and cloud computing of VEPs offers a number of advantages over traditional in-lab systems. The presented mobile application could be used for visual impairment screening, for ubiquitous, massive and low-cost evaluation of vision, and as ambulatory diagnostic tool in rural or undeveloped areas.


EEG VEP mHealth mBCI Mobile brain-computer interface Cloud-computing Clinical Ubiquity 



This work was supported by Nicolo Association for the R+D in Neurotechnologies for disability, the Ministry of Economy and Competitiveness DPI2015-69098-REDT, the research project P11-TIC-7983 of Junta of Andalucia (Spain), and the Spanish National Grant TIN2015-67020-P, co-financed by the European Regional Development Fund (ERDF).


  1. 1.
    Woods, A.M., Nowostawski, M., Franz, E.A., Purvis, M.: Parkinson’s disease and essential tremor classification on mobile device. Pervasive Mob. Comput. 13, 1–12 (2014)CrossRefGoogle Scholar
  2. 2.
    Maxhuni, A., Munoz-Melendez, A., Osmani, V., Perez, H., Mayora, O., Morales, E.F.: Classification of bipolar disorder episodes based on analysis of voice and motor activity of patients. Pervasive Mob. Comput. 31, 50–66 (2016)CrossRefGoogle Scholar
  3. 3.
    Okoshi, T., Nozaki, H., Nakazawa, J., Tokuda, H., Ramos, J., Dey, A.K.: Towards attention-aware adaptive notification on smart phones. Pervasive Mob. Comput. 26, 17–34 (2016)CrossRefGoogle Scholar
  4. 4.
    Ubeyli, E.D., Güler, N.F.: Theory and applications of telemedicine. J. Med. Syst. 26(3), 199–220 (2002)CrossRefGoogle Scholar
  5. 5.
    Black, A.D., Car, J., Pagliari, C., Anandan, C., Cresswell, K., Bokun, T., McKinstry, B., Procter, R., Majeed, A., Sheikh, A.: The impact of ehealth on the quality and safety of health care: a systematic overview. PLoS Med. 8(1), 1–16 (2011)CrossRefGoogle Scholar
  6. 6.
    Lorenz, A., Oppermann, R.: Mobile health monitoring for the elderly: designing for diversity. Pervasive Mob. Comput. 5(5), 478–495 (2009)CrossRefGoogle Scholar
  7. 7.
    Minguillon, J., Lopez-Gordo, M.A., Pelayo, F.: Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed. Sig. Process. Control 31, 407–418 (2017)CrossRefGoogle Scholar
  8. 8.
    Valenzuela-valdés, J.F., López, M.A., Padilla, P., Padilla, J.L., Minguillon, J.: Human neuro-activity for securing body area networks: application of brain-computer interfaces to people-centric internet of things. IEEE Commun. Mag. 55(2), 62–67 (2017)CrossRefGoogle Scholar
  9. 9.
    Lopez-Gordo, M.A., Pelayo Valle, F.: Brain-computer interface as networking entity in body area networks. In: Aguayo-Torres, M.C., Gómez, G., Poncela, J. (eds.) WWIC 2015. LNCS, vol. 9071, pp. 274–285. Springer, Cham (2015). doi: 10.1007/978-3-319-22572-2_20 CrossRefGoogle Scholar
  10. 10.
    Liao, L., Chen, C., Wang, I.: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. NeuroEng. Rehabil. 9(5) (2012)Google Scholar
  11. 11.
    Park, J.L., Fairweather, M.M., Donaldson, D.I.: Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 52, 117–130 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Wang, Y., Jung, T.: A cell-phone-based braincomputer interface for communication in daily life. J. Neural Eng. (2011)Google Scholar
  13. 13.
    Brennan, C., McCullagh, P., Lightbody, G., Galway, L., Feuser, D., González, J.L., Martin, S.: Accessing tele-services using a hybrid BCI approach. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 110–123. Springer, Cham (2015). doi: 10.1007/978-3-319-19258-1_10 CrossRefGoogle Scholar
  14. 14.
    Mihajlovi, V., Grundlehner, B., Vullers, R., Penders, J.: Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J. Biomed. Health Inf. 19(1), 6–21 (2015)CrossRefGoogle Scholar
  15. 15.
    Lin, C., Lin, F., Chen, S.: EEG-based brain-computer interface for smart living environmental auto-adjustment. J. Med. Biol. Eng. 30(4), 237–245 (2010)CrossRefGoogle Scholar
  16. 16.
    Lin, C., Chang, C., Lin, B.: A real-time wireless braincomputer interface system for drowsiness detection. Biomed. Circ. Syst. IEEE Trans. 4(4), 214–222 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., Dutoit, T.: Performance of the Emotiv Epoc headset for P300-based applications. Biomed. Eng. Online 12(1), 56 (2013)CrossRefGoogle Scholar
  18. 18.
    Odom, J.V., Bach, M., Brigell, M., Holder, G.E., McCulloch, D.L., Mizota, A., Tormene, A.P.: ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. 133(1), 1–9 (2016)CrossRefGoogle Scholar
  19. 19.
    Brecelj, J.: A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials 84(3), 209–218 (1992)CrossRefGoogle Scholar
  20. 20.
    Nightingale, S., Mitchell, K.W., Howe, J.W.: Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J. Neurol. Neurosurg. Psychiatry 49, 1280–1287 (1986)CrossRefGoogle Scholar
  21. 21.
    Frederiksen, J.L., Larsson, H.B.W., OlesenI, J., Stigsby, B.: MRI, VEP, SEP and biothesiometry suggest monosymptomatic acute optic neuritis to be a first manifestation of multiple sclerosis. Acta Neurol. Scand. 83, 343–350 (1991)CrossRefGoogle Scholar
  22. 22.
    McCulloch, D.L., Skarf, B.: Pattern reversal visual evoked potentials following early treatment of unilateral, congenital cataract. Arch. Ophthalmol. 112, 510 (1994)CrossRefGoogle Scholar
  23. 23.
    Folk, J.C., Thompson, H.S., Han, D.P., Brown, C.K.: Visual function abnormalities in central serous retinopathy. Arch. Ophthalmol. 102, 1299–1302 (1984)CrossRefGoogle Scholar
  24. 24.
    Hood, D.C., Greenstein, V.C.: Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog. Retinal Eye Res. 22(2), 201–251 (2003)CrossRefGoogle Scholar
  25. 25.
    Carroll, W.M., Mastaglia, F.L.: Leber’s optic neuropathy: a clinical and visual evoked potential study of affected and asymptomatic members of a six generation family. Brain: J. Neurol. 102, 559–580 (1979)CrossRefGoogle Scholar
  26. 26.
    Julkunen, L., Tenovuo, O., Vorobyev, V., Hiltunen, J., Teräs, M., Jääskeläinen, S.K., Hämäläinen, H.: Functional brain imaging, clinical and neurophysiological outcome of visual rehabilitation in a chronic stroke patient. Restorative Neurol. Neurosci. 24(2), 123–132 (2006)Google Scholar
  27. 27.
    Van den Bruel, A., Gailly, J., Hulstaert, F., Devriese, S., Eyssen, M.: The value of EEG, evoked potentials in clinical practice, Good Clinical Practice (GCP). Brussel: Belgian Health Care Knowledge Centre (KCE), KCE report 109C, pp. 1–138 (2009)Google Scholar
  28. 28.
    Evans, A.B.: Clinical utility of evoked potentials. Medscape, 1–28 (2014)Google Scholar
  29. 29.
    Brigell, M., Kaufman, D.I., Bobak, P., Beydoun, A.: The pattern visual evoked potential. A multicenter study using standardized techniques. Ophthalmic Lit. 48(4), 308 (1995)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jesus Minguillon
    • 1
    Email author
  • Miguel Angel Lopez-Gordo
    • 2
  • Christian Morillas
    • 1
  • Francisco Pelayo
    • 1
  1. 1.Department of Computer Architecture and Technology - CITICUniversity of GranadaGranadaSpain
  2. 2.Department of Signal Theory, Telematics and Communications - CITICUniversity of GranadaGranadaSpain

Personalised recommendations