Advertisement

Identification of the Semantic Disconnection in Alzheimer’s Patients Conducted by Bayesian Algorithms

  • Susana Arias Tapia
  • Rafael Martínez Tomás
  • Margarita Narváez RíosEmail author
  • Hector F. Gómez
  • Cristina Páez Quinde
  • Verónica E. Chicaiza R.
  • Judith Núnez Ramirez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)

Abstract

In recent years efforts to find mechanisms that allow early identification of neurodegenerative disease with an impact on Alzheimer’s cognitive abilities or progress have been a concern of the scientific community and caregivers. For this, we start from the hypothesis, supported by the bibliography of the subject, which states that people with early Alzheimer’s present semantic disconnections between the emotions that is showed in the face and feeling, they are shown by an oral or textual phrase. The key point here is that the caregivers can’t be awaiting all the time to find the number of disconnections, but these can be recorded in video and audio as well as be analyzed automatically. Our proposal is to develop a methodology that is based on a software that detects emotions in the face of the participants developed in our study group and in some Bayesian rhythms that allow to classify the sentimental polarity of the conversational phrases. This methodology allows the comparison of results and obtain the moments of semantic disconnection when there is no coincidence between the emotions and the polarity. The experimental results show that it has been possible to identify the disconnections with an 82% success. Our study is an initial proposal, although following previous work that qualifies this line of work....

Keywords

Analysis of feelings Human emotions Labels Alzheimer’s 

References

  1. 1.
    Arias, T.S.A., Martínez-Tomás, R., Gómez, A.H.F., Hernández del Salto, V., Sánchez Guerrero, J., Mocha-Bonilla, J.A., et al.: The dissociation between polarity, semantic orientation, and emotional tone as an early indicator of cognitive impairment. Front. Comput. Neurosci. 10, 1–9 (2016)Google Scholar
  2. 2.
    Pietrosemoli, L.: Análisis del discurso en poblaciones especiales: la conversación con afásicos. Caracas: Los Libros de El Nacional (2007)Google Scholar
  3. 3.
    Liu, S., Song, Y., Cai, W., Pujol, S., Kikinis, R., Wang, X., Feng, D.: Multifold Bayesian Kernelization in Alzheimer’s Diagnosis. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 303–310. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40763-5_38 CrossRefGoogle Scholar
  4. 4.
    Seixas, F.L., Zadrozny, B., Laks, J., Conci, A., Muchaluat Saade, D.C.: A Bayesian network decision model for supporting the diagnosis of dementia. Alzheimer’s disease and mild cognitive impairment. Comput. Biol. Med. 51, 140–158 (2014)CrossRefGoogle Scholar
  5. 5.
    Torres-Carrión, P., González-González, C., Mora Carreño, A.: Facial emotion analysis in down’s syndrome children in classroom. In: Proceedings of the XVI International Conference on Human Computer Interaction. Vilanova i a la Geltrú: ResearchGate (2015)Google Scholar
  6. 6.
    Mohammad, S., Turney, P.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29, 436–465 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rincón, M., García-Herranz, S., Díaz-Mardomingo, M.C., Martínez-Tomás, R., Peraita, H.: Automatic drawing analysis of figures included in neuropsychological tests for the assessment and diagnosis of mild cognitive impairment. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 508–515. Springer, Cham (2015). doi: 10.1007/978-3-319-18914-7_53 CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Mormino, E., Sun, N., Sperling, R., Sabuncu, M., Thomas Yeo, B.: Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease. Alzheimer Disease Neuroimaging Initiative, 6535–6544 (2016)Google Scholar
  9. 9.
    Guerrero, J., Martínez-Tomás, R., Rincón, M., Peraita, H.: Diagnosis of cognitive impairment compatible with early diagnosis of Alzheimer’s Disease. A Bayesian network model basaed on the analysis of oral definitions of semantic categories. Methods Inf. Med. 55, 42–49 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Susana Arias Tapia
    • 1
  • Rafael Martínez Tomás
    • 2
  • Margarita Narváez Ríos
    • 1
    Email author
  • Hector F. Gómez
    • 1
  • Cristina Páez Quinde
    • 1
  • Verónica E. Chicaiza R.
    • 1
  • Judith Núnez Ramirez
    • 1
  1. 1.Facultad de Ciencias Humanas y de la EducaciónUniversidad Técnica de AmbatoAmbato- EcuadorEcuador
  2. 2.Dpto. Inteligencia ArtificialUniversidad Nacional de Educación a DistanciaMadridSpain

Personalised recommendations