Acceleration of Moving Object Detection in Bio-Inspired Computer Vision

  • José L. Sánchez
  • Raúl Viana
  • María T. López
  • Antonio Fernández-CaballeroEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)


Computer vision is a great interest field offering relevant information in a wide variety of areas. Different video processing techniques, for instance, allow us to detect moving objects from image sequences of fixed surveillance cameras. Lateral Interaction in Accumulative Computation is a classical bio-inspired method that is usually applied for detecting moving objects in video processing. This method achieves high precision but also requires a high processing time. This paper introduces a parallel code capable of keeping a high performance in terms of accuracy and runtime for the method. For some of the image sequences tested, a speed-up of \(67\times \) over the sequential counterpart is achieved.


Motion detection Acceleration Graphics Processing Unit Lateral Interaction in Accumulative Computation 



This work was partially supported by Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI)/European Regional Development Fund under DPI2016-80894-R grant.


  1. 1.
    Ullman, S., Assif, L., Fetaya, E., Harari, D.: Atoms of recognition in human and computer vision. PNAS 113(10), 2744–2749 (2016)CrossRefGoogle Scholar
  2. 2.
    Kriegeskorte, N.: Deep neural networks: a new framework for modeling biological vision and brain information processing. Ann. Rev. Vis. Sci. 1, 417–446 (2015)CrossRefGoogle Scholar
  3. 3.
    Cox, D.D., Dean, T.: Neural networks and neuroscience-inspired computer vision. Curr. Biol. 24(18), R921–R929 (2014)CrossRefGoogle Scholar
  4. 4.
    Medathati, N.V.K., Neumann, H., Masson, G.S., Kornprobst, P.: Bio-inspired computer vision: towards a synergistic approach of artificial and biological vision. Comput. Vis. Image Underst. 150, 1–30 (2016)CrossRefGoogle Scholar
  5. 5.
    Fernández-Caballero, A., Mira, J., Fernández, M.A., Delgado, A.E.: On motion detection through a multi-layer neural network architecture. Neural Netw. 16(2), 205–222 (2003)CrossRefGoogle Scholar
  6. 6.
    Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: a model for motion detection. Neurocomputing 50, 341–364 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fernández-Caballero, A., López, M.T., Carmona, E.J., Delgado, A.E.: A historical perspective of algorithmic lateral inhibition and accumulative computation in computer vision. Neurocomputing 74(8), 1175–1181 (2011)CrossRefGoogle Scholar
  8. 8.
    Delgado, A.E., López, M.T., Fernández-Caballero, A.: Real-time motion detection by lateral inhibition in accumulative computation. Eng. Appl. Artif. Intell. 23(1), 129–139 (2010)CrossRefGoogle Scholar
  9. 9.
    Fernández-Caballero, A., López, M.T., Castillo, J.C., Maldonado, S.: Real-time accumulative computation motion detectors. Sensors 9(12), 10044–10065 (2009)CrossRefGoogle Scholar
  10. 10.
    Kirk, D., Hwu, W.-M.: Programming Massively Parallel Processors, 2nd edn. Morgan Kaufmann, Burlington (2012)Google Scholar
  11. 11.
    NVIDIA Corporation. CUDA C Best Practices Guide, v8.0, ed. (2017)Google Scholar
  12. 12.
    Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognit. 36(5), 1131–1142 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • José L. Sánchez
    • 1
    • 2
  • Raúl Viana
    • 1
  • María T. López
    • 1
    • 2
  • Antonio Fernández-Caballero
    • 1
    • 2
    Email author
  1. 1.Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations