Advertisement

Bayesian Unbiasing of the Gaia Space Mission Time Series Database

  • Héctor E. DelgadoEmail author
  • Luis M. Sarro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)

Abstract

21\(^{st}\) century astrophysicists are confronted with the herculean task of distilling the maximum scientific return from extremely expensive and complex space- or ground-based instrumental projects. This paper concentrates in the mining of the time series catalog produced by the European Space Agency Gaia mission, launched in December 2013. We tackle in particular the problem of inferring the true distribution of the variability properties of Cepheid stars in the Milky Way satellite galaxy known as the Large Magellanic Cloud (LMC). Classical Cepheid stars are the first step in the so-called distance ladder: a series of techniques to measure cosmological distances and decipher the structure and evolution of our Universe. In this work we attempt to unbias the catalog by modelling the aliasing phenomenon that distorts the true distribution of periods. We have represented the problem by a 2-level generative Bayesian graphical model and used a Markov chain Monte Carlo (MCMC) algorithm for inference (classification and regression). Our results with synthetic data show that the system successfully removes systematic biases and is able to infer the true hyperparameters of the frequency and magnitude distributions.

Keywords

Astrostatistics Bayesian Data analysis Hierarchical model Markov chain Monte Carlo Catalogues 

References

  1. 1.
    Antonello, E., Fugazza, D., Mantegazza, L.: Variable stars in nearby galaxies VI. Frequency-period distribution of Cepheids in IC 1613 and other galaxies of the local group. Astron. Astrophys. 388, 477–482 (2002)CrossRefGoogle Scholar
  2. 2.
    Azzalini, A., Genton, M.G.: Robust likelihood methods based on the skew-t and related distributions. Int. Stat. Rev. 76(1), 106–129 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brooks, S.P., Gelman, A.: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7(4), 434–455 (1998)MathSciNetGoogle Scholar
  4. 4.
    Eyer, L., Mignard, F.: Rate of correct detection of periodic signal with the Gaia satellite. Mon. Not. R. Astron. Soc. 361(4), 1136–1144 (2005)CrossRefGoogle Scholar
  5. 5.
    Gaia Collaboration, Prusti, T., de Bruijne, J.H.J., Brown, A.G.A., Vallenari, A., Babusiaux, C., Bailer-Jones, C.A.L., Bastian, U., Biermann, M., Evans, D.W., et al.: The Gaia mission. Astron. Astrophys. 595, A1 (2016)Google Scholar
  6. 6.
    Gelman, A., Jakulin, A., Pittau, M.G., Su, Y.S.: A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat. 2(4), 1360–1383 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gelman, A., Shalizi, C.R.: Philosophy and the practice of Bayesian statistics. B. J. Math. Stat. Psychol. 66, 8–38 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lauritzen, S.: Graphical Models. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  9. 9.
    Lunn, D., Jackson, C., Best, N., Thomas, A., Spiegelhalter, D.: The BUGS Book: A Practical Introduction to Bayesian Analysis. CRC Texts in Statistical Science, Chapman & Hall. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  10. 10.
    Lunn, D., Spiegelhalter, D., Thomas, A., Best, N.: The bugs project: evolution, critique and future directions. Stat. Med. 28(25), 3049–3067 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausble Inference. Morgan Kaufmann Publishers, Burlington (1988)Google Scholar
  12. 12.
    Robert, C.P., Mengersen, K.L.: Reparameterisation issues in mixture modelling and their bearing on MCMC algorithms. Comput. Stat. Data Anal. 29(3), 325–343 (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Robert, C., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sandage, A., Tammann, G., Reindl, B.: New period-luminosity and period-color relations of classical Cepheids II. Cepheids in LMC. Astron. Astrophys. 424, 43–71 (2004)CrossRefGoogle Scholar
  15. 15.
    Soszynski, I., Poleski, R., Udalski, A., Szymanski, M.K., Kubiak, M., Pietrzynski, G., Wyrzykowski, L., Szewczyk, O., Ulaczyk, K.: The optical gravitational lensing experiment. The OGLE-III catalog of variable stars I. Classical Cepheids in the large magellanic cloud. Acta Astronomica 58, 163–185 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dpto. de Inteligencia ArtificialUNEDMadridSpain

Personalised recommendations