Advertisement

Vowel Articulation Distortion in Parkinson’s Disease

  • P. Gómez-VildaEmail author
  • J. M. Ferrández-Vicente
  • D. Palacios-Alonso
  • A. Gómez-Rodellar
  • V. Rodellar-Biarge
  • J. Mekyska
  • Z. Smekal
  • I. Rektorova
  • I. Eliasova
  • M. Kostalova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)

Abstract

Neurodegenerative pathologies produce important distortions in speech. Parkinson’s Disease (PD) leaves marks in fluency, prosody, articulation and phonation. Certain measurements based in configurations of the articulation organs inferred from formant positions, as the Vocal Space Area (VSA) or the Formant Centralization Ratio (FCR) have been classically used in this sense, but these markers represent mainly the static positions of sustained vowels on the vowel triangle. The present study proposes a measurement based on the mutual information contents of kinematic correlates derived from formant dynamics. An absolute kinematic velocity associated to the position of the articulation organs, involving the jaw and tongue is estimated and modelled statistically. The distribution of this feature is rather different in PD patients than in normative speakers when sustained vowels are considered. Therefore, articulation failures may be detected even in single sustained vowels. The study has processed a limited database of 40 female and 54 male PD patients, contrasted to a very selected and stable set of normative speakers. Distances based on Kullback-Leibler’s Divergence have shown to be sensitive to PD articulation instability. Correlation measurements show that the distance proposed shows statistically relevant relationship with certain motor and non-motor behavioral observations, as freezing of gait, or sleep disorders. These results point out to the need of defining scoring scales specifically designed for speech-based diagnose and monitoring methodologies in degenerative diseases of neuromotor origin.

Keywords

Neurologic disease Parkinson’s disease Speech neuromotor activity Aging voice Hypokinetic dysarthria 

Notes

Acknowledgements

This work is being funded by grants TEC2012-38630-C04-01, TEC2012-38630-C04-04 and TEC2016-77791-C4-4-R from the Ministry of Economic Affairs and Competitiveness of Spain, and by grants 16-30805A, SIX (CZ.1.05/2.1.00/03.0072), and LOl401 from the Czech Republic Government.

References

  1. 1.
    Carmona-Duarte, C., Plamondon, R., Gómez-Vilda, P., Ferrer, M.A., Alonso, J.B., Londral, A.R.M.: Application of the lognormal model to the vocal tract movement to detect neurological diseases in voice. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 25–35. Springer, Cham (2016). doi: 10.1007/978-3-319-39687-3_3 CrossRefGoogle Scholar
  2. 2.
    Démonet, J.F., Thierry, G., Cardebat, D.: Renewal of the neurophysiology of language: functional neuroimaging. Physiol. Rev. 85(1), 49–95 (2005)CrossRefGoogle Scholar
  3. 3.
    Dromey, C., Jang, G.O., Hollis, K.: Assessing correlations between lingual movements and formants. Speech Commun. 55(2), 315–328 (2013)CrossRefGoogle Scholar
  4. 4.
    Fénelon, G., Mahieux, F., Huon, R., Ziégler, M.: Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 123, 733–745 (2000)CrossRefGoogle Scholar
  5. 5.
    Goetz, C.G., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stebbins, G.T., Stern, M.B., Tilley, B.C., Dodel, R., Dubois, B., et al.: Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov. Disord. 22(1), 41–47 (2007)CrossRefGoogle Scholar
  6. 6.
    Gómez-Vilda, P., López de Ipiña, M.K., Rodellar-Biarge, V., Palacios-Alonso, D., Ecay-Torres, M.: Articulation characterization in AD speech production. In: Ibáñez, J., González-Vargas, J., Azorín, J., Akay, M., Pons, J. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics, vol. 15, pp. 861–866. Springer, Cham (2016). doi: 10.1007/978-3-319-46669-9_140 CrossRefGoogle Scholar
  7. 7.
    Gómez-Vilda, P., Palacios-Alonso, D., Gómez-Rodellar, A., Ferrández-Vicente, J., Álvarez-Marquina, A., Martínez-Olalla, R., Nieto-Lluis, V.: Relating facial myoelectric activity to speech formants. In: Ferrández Vicente, J.M., et al. (eds.) IWINAC 2017, Part II. LNCS, vol. 10338, pp. 520–530. Springer, Cham (2017)Google Scholar
  8. 8.
    Hannam, A.G., Stavness, I., Lloyd, J.E., Fels, S.: A dynamic model of jaw and hyoid biomechanics during chewing. J. Biomech. 41(5), 1069–1076 (2008)CrossRefGoogle Scholar
  9. 9.
    Hoehn, M.M., Yahr, M.D., et al.: Parkinsonism: onset, progression, and mortality. Neurology 50(2), 318–318 (1998)CrossRefGoogle Scholar
  10. 10.
    Mekyska, J., Janousova, E., Gomez-Vilda, P., Smekal, Z., Rektorova, I., Eliasova, I., Kostalova, M., Mrackova, M., Alonso-Hernandez, J.B., Faundez-Zanuy, M., et al.: Robust and complex approach of pathological speech signal analysis. Neurocomputing 167, 94–111 (2015)CrossRefGoogle Scholar
  11. 11.
    Pérez-Lloret, S., Negre-Pages, L., Damier, P., Delval, A., Derkinderen, P., Destée, A., Meissner, W.G., Schelosky, L., Tison, F., Rascol, O.: Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol. 71(7), 884–890 (2014)CrossRefGoogle Scholar
  12. 12.
    Sanguineti, V., Laboissiere, R., Payan, Y.: A control model of human tongue movements in speech. Biol. Cybern. 77(1), 11–22 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Sapir, S., Ramig, L.O., Spielman, J.L., Fox, C.: Formant centralization ratio: a proposal for a new acoustic measure of dysarthric speech. J. Speech Lang. Hear. Res. 53(1), 114–125 (2010)CrossRefGoogle Scholar
  14. 14.
    Stiasny-Kolster, K., Sixel-Döring, F., Trenkwalder, C., Heinzel-Gutenbrunner, M., Seppi, K., Poewe, W., Högl, B., Frauscher, B.: Diagnostic value of the rem sleep behavior disorder screening questionnaire in Parkinson’s disease. Sleep Med. 16(1), 186–189 (2015)CrossRefGoogle Scholar
  15. 15.
    Thomas, J.A., Cover, T.M.: Elements of Information Theory. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  16. 16.
    Tsanas, A., Little, M.A., McSharry, P.E., Spielman, J., Ramig, L.O.: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2012)CrossRefGoogle Scholar
  17. 17.
    Ziemssen, T., Reichmann, H.: Non-motor dysfunction in Parkinson’s disease. Parkinsonism Relat. Disord. 13(6), 323–332 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • P. Gómez-Vilda
    • 1
    Email author
  • J. M. Ferrández-Vicente
    • 2
  • D. Palacios-Alonso
    • 1
  • A. Gómez-Rodellar
    • 1
  • V. Rodellar-Biarge
    • 1
  • J. Mekyska
    • 3
  • Z. Smekal
    • 3
  • I. Rektorova
    • 4
    • 6
  • I. Eliasova
    • 4
    • 6
  • M. Kostalova
    • 5
    • 6
  1. 1.Neuromorphic Speech Processing Lab, Center for Biomedical TechnologyUniversidad Politécnica de MadridPozuelo de Alarcón, MadridSpain
  2. 2.Universidad Politécnica de CartagenaCartagenaSpain
  3. 3.Department of TelecommunicationsBrno University of TechnologyBrnoCzech Republic
  4. 4.First Department of Neurology, Faculty of MedicineSt. Anne’s University Hospital, Masaryk UniversityBrnoCzech Republic
  5. 5.Department of Neurology, Faculty HospitalMasaryk UniversityBrnoCzech Republic
  6. 6.Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic

Personalised recommendations