Advertisement

Deep Learning-Based Approach for Time Series Forecasting with Application to Electricity Load

  • J. F. Torres
  • A. M. Fernández
  • A. Troncoso
  • F. Martínez-ÁlvarezEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)

Abstract

This paper presents a novel method to predict times series using deep learning. In particular, the method can be used for arbitrary time horizons, dividing each predicted sample into a single problem. This fact allows easy parallelization and adaptation to the big data context. Deep learning implementation in H2O library is used for each subproblem. However, H2O does not permit multi-step regression, therefore the solution proposed consists in splitting into h forecasting subproblems, being h the number of samples to be predicted, and, each of one has been separately studied, getting the best prediction model for each subproblem. Additionally, Apache Spark is used to load in memory large datasets and speed up the execution time. This methodology has been tested on a real-world dataset composed of electricity consumption in Spain, with a ten minute frequency sampling rate, from 2007 to 2016. Reported results exhibit errors less than 2%.

Keywords

Deep learning Time series Forecasting Apache spark 

Notes

Acknowledgments

The authors would like to thank the Spanish Ministry of Economy and competitiveness and Junta de Andalucía for the support under projects TIN2014-55894-C2-R and P12-TIC-1728, respectively.

References

  1. 1.
    Baek, J., Sohn, K.: Deep-learning architectures to forecast bus ridership at the stop and stop-to-stop levels for dense and crowded bus networks. Appl. Artif. Intell. 30(9), 861–885 (2016)CrossRefGoogle Scholar
  2. 2.
    Candel, A., LeDell, E., Parmar, V., Arora, A.: Deep Learning with H2O. H2O.ai Inc., California (2017)Google Scholar
  3. 3.
    Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2094–2107 (2014)CrossRefGoogle Scholar
  4. 4.
    Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 2327–2334 (2015)Google Scholar
  5. 5.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)Google Scholar
  6. 6.
    Grolinger, K., L’Heureux, A., Capretz, M.A.M., Seewald, L.: Energy forecasting for event venues: big data and prediction accuracy. Energy Buildings 112, 222–233 (2016)CrossRefGoogle Scholar
  7. 7.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  8. 8.
    Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. Int. 23, 22408–22417 (2016)CrossRefGoogle Scholar
  9. 9.
    Livingstone, D.J., Manallack, D.T., Tetko, I.V.: Data modelling with neural networks: advantages and limitations. J. Comput.-Aided Mol. Des. 11, 135–142 (1997)CrossRefGoogle Scholar
  10. 10.
    Martínez-Álvarez, F., Troncoso, A., Asencio-Cortés, G., Riquelme, J.C.: A survey on data mining techniques applied to energy time series forecasting. Energies 8, 1–32 (2015)CrossRefGoogle Scholar
  11. 11.
    Pérez-Chacón, R., Talavera-Llames, R.L., Troncoso, A., Martínez-Álvarez, F.: Finding electric energy consumption patterns in big time series data. In: Omatu, S., et al. (eds.) Proceedings of the International Conference on Distributed Computing and Artificial Intelligence. AISC, vol. 474, pp. 231–238. Springer, Cham (2016)CrossRefGoogle Scholar
  12. 12.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  13. 13.
    Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initialization and momentum in deep learning. In: Proceedings of the International Conference on Machine Learning, pp. 1139–1147 (2013)Google Scholar
  14. 14.
    Tabar, Y.R., Halici, U.: Deep learning-based classification of hyperspectral data. J. Neural Eng. 14(1), 016003 (2016)CrossRefGoogle Scholar
  15. 15.
    Talavera-Llames, R.L., Pérez-Chacón, R., Martínez-Ballesteros, M., Troncoso, A., Martínez-Álvarez, F.: A nearest neighbours-based algorithm for big time series data forecasting. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds.) HAIS 2016. LNCS, vol. 9648, pp. 174–185. Springer, Cham (2016). doi: 10.1007/978-3-319-32034-2_15 CrossRefGoogle Scholar
  16. 16.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the International Conference on Hot Topics in Cloud Computing, pp. 1–10 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • J. F. Torres
    • 1
  • A. M. Fernández
    • 1
  • A. Troncoso
    • 1
  • F. Martínez-Álvarez
    • 1
    Email author
  1. 1.Division of Computer ScienceUniversidad Pablo de OlavideSevilleSpain

Personalised recommendations