Hierarchical-Architecture Oriented to Multi-task Planning for Prosthetic Hands Controlling

  • César QuinayásEmail author
  • Andrés Ruiz
  • Leonardo Torres
  • Carlos Gaviria
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)


In this paper, a hierarchical hardware/software architecture for controlling hand prostheses is presented. It is based on both the task planning paradigm and the central nervous system (CNS) so it can be considered as a smart tool which helps people to develop tasks. A hand prostheses prototype, with force and position sensors, controlled by myoelectric commands is used for the validation of the hierarchical control between the user and the prosthesis. The proposed hierarchical control has been validated by people without disability through grasp tasks used in daily life.


Hand prosthesis Hierarchical architecture Task planning 


  1. 1.
    Kapandji, I.A.: Physiology of the Joints. The Upper Limb. Churchill Livingstone, New York (1982)Google Scholar
  2. 2.
    Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-Hand II: next generation of a dextrous robot hand. In: IEEE International Conference on Robotics and Automation, Seoul, pp. 109–114 (2001)Google Scholar
  3. 3.
    Dalley, S.A., Wiste, T.E., Withrow, T.J., Goldfarb, M.: Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME Trans. Mechatron. 14, 699–706 (2009)CrossRefGoogle Scholar
  4. 4.
    Capriani, C., Controzzi, M., Carrozza, M.C.: Mechanical design of a transradial cybernetic hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, pp. 576–581 (2008)Google Scholar
  5. 5.
    Santello, M., Soechting, J.F.: Force synergies for multifingered grasping. Exp. Brain Res. 133, 457–467 (2000)CrossRefGoogle Scholar
  6. 6.
    Bernstein, N.A.: The problem of interrelaton between coordination and localization. Arch. Biol. Sci. 38, 1–35 (1935)Google Scholar
  7. 7.
    Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 30, 459–485 (2002)CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Kim, K., Choi, H., Moon, C., Mun, C.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11, 740–745 (2011)CrossRefGoogle Scholar
  12. 12.
    Oskoei, M., Hu, H.: Myoelectric control systems—A survey. Biomed. Signal Process. Control 2, 275–294 (2007)CrossRefGoogle Scholar
  13. 13.
    Farina, D., Yoshida, K., Stieglitz, T., Koch, K.P.: Multichannel thin-film electrode for intramuscular electromyographic recordings. J. Appl. Physiol. 104, 821–827 (2008)CrossRefGoogle Scholar
  14. 14.
    Kuiken, T.A., Dumanian, G.A., Lipschutz, R.D., Miller, L.A., Stubblefield, K.A.: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004)Google Scholar
  15. 15.
    Dhillon, G.S., Horch, K.W.: Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005)CrossRefGoogle Scholar
  16. 16.
    Pons, J.L., Rocon, E., Ceres, R., Saro, B., Levin, S., Van Moorleghem, W.: The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton. Robots 16, 143–163 (2004)CrossRefGoogle Scholar
  17. 17.
    Cipriani, C., Zaccone, F., Stellin, G., Beccai, L., Cappiello, G., Carrozza, M.C., Dario, P.: Closed-loop controller for a bio-inspired multi-fingered underactuated prosthesis. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2111–2116 (2006)Google Scholar
  18. 18.
    Cipriani, C., Controzzi, M., Carrozza, M.C.: The SmartHand transradial prosthesis. J. NeuroEng. Rehabil. 8, 1–13 (2011)CrossRefGoogle Scholar
  19. 19.
    Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T.: A cognitive architecture for a humanoid robot: a first approach. In: International Conference on Humanoid Robots, pp. 357–362 (2005)Google Scholar
  20. 20.
    Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 358, 537–547 (2003)CrossRefGoogle Scholar
  21. 21.
    Quinayás, C., Gaviria, C.: Sistema de identificación de intención de movimiento para el control mioelctrico de una prótesis de mano robótica. Ing. Univ. 19, 27–50 (2015)Google Scholar
  22. 22.
    Rijpkema, H., Girard, M.: Computer animation of knowledge- based human grasping. In: 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 339–348 (1991)Google Scholar
  23. 23.
    Cobos, S., Ferre, M., Sanchez-Uran, M.A., Ortego, J., Pena, C.: Efficient human hand kinematics for manipulation tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2246–2251 (2008)Google Scholar
  24. 24.
    Arimoto, S., Tahara, K., Yamaguchi, M., Nguyen, P.T.A., Han, H.Y.: Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica 19, 21–28 (2001)CrossRefGoogle Scholar
  25. 25.
    Quinayás, C., Anãsco, M., Vivas, O., Gaviria, C.: Disenõ y construcción de la prótesis robótica de mano UC-1. Ing. Univ. 14, 223–237 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • César Quinayás
    • 1
    Email author
  • Andrés Ruiz
    • 1
  • Leonardo Torres
    • 1
  • Carlos Gaviria
    • 2
  1. 1.Antonio Nariño UniversityPopayánColombia
  2. 2.University of CaucaPopayánColombia

Personalised recommendations