Advertisement

CAREDAS: Context and Activity Recognition Enabling Detection of Anomalous Situation

  • Hela SfarEmail author
  • Nathan Ramoly
  • Amel Bouzeghoub
  • Beatrice Finance
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)

Abstract

As the world population is growing older, more and more peoples are facing health issues. For elderly, leaving alone can be tough and risky, typically, a fall can have serious consequences for them. Consequently, smart homes are becoming more and more popular. Such sensors enriched environment can be exploited for health-care applications, in particular Anomaly Detection (AD). Currently, most AD solutions only focus on detecting anomalies in the user daily activities while omitting the ones from the environment itself. For instance the user may have forgotten the pan on the stove while he/she is phoning. In this paper, we present a novel approach for detecting anomaly occurring in the home environment during user activities: CAREDAS. We propose a combination between ontologies and Markov Logic Network to classify the situations to anomaly classes. Our system is implemented, tested and evaluated using real data obtained from the Hadaptic platform. Experimental results prove our approach to be efficient in terms of recognition rate.

Keywords

Smart home Anomaly Detection Ontology Markov Logic Network 

Notes

Acknowledgements

This work has been partially supported by the project COCAPS (https://agora.bourges.univ-orleans.fr/COCAPS/) funded by Single Interministrial Fund N20 (FUI N20).

References

  1. 1.
    Jarraya, A., Ramoly, N., Bouzeghoub, A., Arour, K., Borgi, A., Finance, B.: FSCEP: a new model for context perception in smart homes. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 465–484. Springer, Cham (2016). doi: 10.1007/978-3-319-48472-3_28 Google Scholar
  2. 2.
    Jarraya, A., Ramoly, N., Bouzeghoub, A., Arour, K., Borgi, A., Finance, B.: A fuzzy semantic CEP model for situation identification in smart homes. In: ECAI (2016)Google Scholar
  3. 3.
    Sfar, H., Bouzeghoub, A., Ramoly, N., Boudy, J.: AGACY monitoring: a hybrid model for activity recognition and uncertainty handling. In: ESWC (2017)Google Scholar
  4. 4.
    Melisachew, C., Jakob, H., Christian, M., Heiner, S.: Markov logic networks with numerical constraints. In: ECAI (2016)Google Scholar
  5. 5.
    Matthew, R., Pedros, D.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)CrossRefGoogle Scholar
  6. 6.
    Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: semantics, belief revision, and variable certainty weights. In: TKDE, vol. 6 (1994)Google Scholar
  7. 7.
    Hoque, E., Dickerson, F.R., Preum, S.M.: Holmes: a comprehensive anomaly detection system for daily in-home activities. In: DCOSS (2016)Google Scholar
  8. 8.
    Riboni, D., Bettini, C., Civitares, G., Janjua, Z.H.: SmartFABER: recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment. Artif. Intell. Med. 67, 57–74 (2016)CrossRefGoogle Scholar
  9. 9.
    Janjua, Z.H., Riboni, D., Bettini, C.: Towards automatic induction of abnormal behavioral patterns for recognizing mild cognitive impairment. In: SAC (2016)Google Scholar
  10. 10.
    Ye, J., Dobson, S., McKeever, M.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 9, 36–66 (2012)CrossRefGoogle Scholar
  11. 11.
    Huang, J., Zhu, Q., Feng, L.Y.J.: A non-parameter outlier detection algorithm based on Natural Neighbor. Knowl.-Based Syst. 92, 71–77 (2016)CrossRefGoogle Scholar
  12. 12.
    Jakkula, V., Cook, D.J.: Detecting anomalous sensor events in smart home data for enhancing the living experience. In: AIII (2011)Google Scholar
  13. 13.
    Han, Y., Han, M., Lee, S., Sarkar, A.M.J., Lee, Y.K.: A framework for supervising lifestyle diseases using long-term activity monitoring. Sensors 12, 5363–5379 (2012)CrossRefGoogle Scholar
  14. 14.
    Lot, A., Langensiepen, C., Mahmoud, S.M., Akhlaghinia, M.J.: Smart homes for the elderly dementia suerers: identication and prediction of abnormal behavior. J. Ambient Intell. Humaniz Comput. 3, 205–218 (2012)CrossRefGoogle Scholar
  15. 15.
    Novak, M., Binas, M., Jakab, F.: Unobtrusive anomaly detection in presence of elderly in a smart-home environment. In: ELEKTRO (2012)Google Scholar
  16. 16.
    Novak, M., Jakab, F., Lain, L.: Anomaly detection in user daily patterns in smart-home environment. In: JSHI, vol. 3 (2013)Google Scholar
  17. 17.
    Riboni, D., Bettini, C., Civitarese, G., Janjua, Z.H., Helaoui, R.: Fine-grained recognition of abnormal behaviors for early detection of mild cognitive impairment. In: PerCom (2015)Google Scholar
  18. 18.
    Anderson, D.T., Ros, M., Keller, J.M., Cuellar, M.P., Popescu, M., Delgado, M., Vila, A.: Similarity measure for anomaly detection and comparing human behaviors. Int. J. Intell. Syst. 27, 733–756 (2012)CrossRefGoogle Scholar
  19. 19.
    Chen, H., Ku, W.S., Wang, H., Tang, L., Sun, M.T.: Scaling up Markov logic probabilistic inference for social graphs. In: TKDE, vol. 29 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hela Sfar
    • 1
    Email author
  • Nathan Ramoly
    • 1
  • Amel Bouzeghoub
    • 1
  • Beatrice Finance
    • 2
  1. 1.CNRS Paris Saclay, Telecom SudParis, SAMOVARParisFrance
  2. 2.DAVIDUniversity of Versailles Saint-Quentin-en-YvelinesVersaillesFrance

Personalised recommendations