Multi-level Interactive Medical Process Mining

  • Luca Canensi
  • Giorgio Leonardi
  • Stefania MontaniEmail author
  • Paolo Terenziani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)


In this paper, we present a novel process mining approach, specifically tailored to medical applications, which allows the user to build an initial process model from the hospital event log, and then supports further model refinements, by directly exploiting her knowledge-based model evaluation. In such a way, it supports the interactive construction of the process model at multiple and user-defined levels of abstraction, ranging from a model which perfectly adheres to the input traces (i.e., all of its paths correspond to at least one trace in the log) to models which increasingly loose precision, but gain generality. Our results in the field of stroke management, reported as a case study in this paper, show that our approach can provide relevant advantages with respect to traditional process mining techniques.


  1. 1.
    Bottrighi, A., Canensi, L., Leonardi, G., Montani, S., Terenziani, P.: Trace retrieval for business process operational support. Expert Syst. Appl. 55, 212–221 (2016)CrossRefGoogle Scholar
  2. 2.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33606-5_19 CrossRefGoogle Scholar
  3. 3.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)CrossRefGoogle Scholar
  4. 4.
    IEEE Taskforce on Process Mining: Process Mining Manifesto. Accessed 4 Nov 2013
  5. 5.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B., Moleman, A.J.: Process mining in healthcare: data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) KR4HC/ProHealth -2012. LNCS (LNAI), vol. 7738, pp. 140–153. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36438-9_10 CrossRefGoogle Scholar
  6. 6.
    Rojas, E., Munoz-Gama, J., Sepulveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)CrossRefGoogle Scholar
  7. 7.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). doi: 10.1007/11494744_25 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luca Canensi
    • 1
  • Giorgio Leonardi
    • 2
  • Stefania Montani
    • 2
    Email author
  • Paolo Terenziani
    • 2
  1. 1.Department of Computer ScienceUniversità di TorinoTurinItaly
  2. 2.DISIT, Computer Science InstituteUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations