Advertisement

Discriminant Chronicles Mining

Application to Care Pathways Analytics
  • Yann DauxaisEmail author
  • Thomas Guyet
  • David Gross-Amblard
  • André Happe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)

Abstract

Pharmaco-epidemiology (PE) is the study of uses and effects of drugs in well defined populations. As medico-administrative databases cover a large part of the population, they have become very interesting to carry PE studies. Such databases provide longitudinal care pathways in real condition containing timestamped care events, especially drug deliveries. Temporal pattern mining becomes a strategic choice to gain valuable insights about drug uses. In this paper we propose DCM, a new discriminant temporal pattern mining algorithm. It extracts chronicle patterns that occur more in a studied population than in a control population. We present results on the identification of possible associations between hospitalizations for seizure and anti-epileptic drug switches in care pathway of epileptic patients.

Keywords

Temporal pattern mining Knowledge discovery Pharmaco-epidemiology Medico-administrative databases 

References

  1. 1.
    Alvarez, M.R., Felix, P., Carinena, P.: Discovering metric temporal constraint networks on temporal databases. Artif. Intell. Med. 58, 139–154 (2013)CrossRefGoogle Scholar
  2. 2.
    Berlingerio, M., Bonchi, F., Giannotti, F., Turini, F.: Mining clinical data with a temporal dimension: a case study. In: Proceedings of the International Conference on Bioinformatics and Biomedicine, pp. 429–436 (2007)Google Scholar
  3. 3.
    Cohen, W.W.: Fast effective rule induction. In: Proceedings of the International Conference on Machine Learning, pp. 115–123 (1995)Google Scholar
  4. 4.
    Concaro, S., Sacchi, L., Cerra, C., Fratino, P., Bellazzi, R.: Mining healthcare data with temporal association rules: improvements and assessment for a practical use. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) AIME 2009. LNCS, vol. 5651, pp. 16–25. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02976-9_3 CrossRefGoogle Scholar
  5. 5.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fradkin, D., Mörchen, F.: Mining sequential patterns for classification. Knowl. Inf. Syst. 45(3), 731–749 (2015)CrossRefGoogle Scholar
  7. 7.
    Guyet, T., Quiniou, R.: Extracting temporal patterns from interval-based sequences. In: Proceedings of the IJCAI, pp. 1306–1311 (2011)Google Scholar
  8. 8.
    Huang, Z., Lu, X., Duan, H.: On mining clinical pathway patterns from medical behaviors. Artif. Intell. Med. 56, 35–50 (2012)CrossRefGoogle Scholar
  9. 9.
    Lakshmanan, G.T., Rozsnyai, S., Wang, F.: Investigating clinical care pathways correlated with outcomes. In: Business Process Management, pp. 323–338 (2013)Google Scholar
  10. 10.
    Moskovitch, R., Shahar, Y.: Fast time intervals mining using the transitivity of temporal relations. Knowl. Inf. Syst. 42, 21–48 (2015)CrossRefGoogle Scholar
  11. 11.
    Moulis, G., Lapeyre-Mestre, M., Palmaro, A., Pugnet, G., Montastruc, J.L., Sailler, L.: French health insurance databases: what interest for medical research? La Revue de Médecine Interne 36, 411–417 (2015)CrossRefGoogle Scholar
  12. 12.
    Polard, E., Nowak, E., Happe, A., Biraben, A., Oger, E.: Brand name to generic substitution of antiepileptic drugs does not lead to seizure-related hospitalization: a population-based case-crossover study. Pharmacoepidemiol. Drug Saf. 24, 1161–1169 (2015)CrossRefGoogle Scholar
  13. 13.
    Quiniou, R., Cordier, M.-O., Carrault, G., Wang, F.: Application of ILP to cardiac arrhythmia characterization for chronicle recognition. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 220–227. Springer, Heidelberg (2001). doi: 10.1007/3-540-44797-0_18 CrossRefGoogle Scholar
  14. 14.
    Wright, A.P., Wright, A.T., McCoy, A.B., Sittig, D.F.: The use of sequential pattern mining to predict next prescribed medications. J. Biomed. Inform. 53, 73–80 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yann Dauxais
    • 1
    Email author
  • Thomas Guyet
    • 2
  • David Gross-Amblard
    • 1
  • André Happe
    • 3
  1. 1.Rennes University 1/IRISA-UMR6074RennesFrance
  2. 2.AGROCAMPUS-OUEST/IRISA-UMR6074RennesFrance
  3. 3.CHRU BREST/EA-7449 REPERESBrestFrance

Personalised recommendations