Combining Multitask Learning and Short Time Series Analysis in Parkinson’s Disease Patients Stratification

  • Anita ValmarskaEmail author
  • Dragana Miljkovic
  • Spiros Konitsiotis
  • Dimitris Gatsios
  • Nada Lavrač
  • Marko Robnik-Šikonja
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)


Quality of life of patients with Parkinson’s disease degrades significantly with disease progression. This paper presents a step towards personalized medicine management of Parkinson’s disease patients, based on discovering groups of similar patients. Similarity is based on patients’ medical conditions and changes in the prescribed therapy when the medical conditions change. The presented methodology combines multitask learning using predictive clustering trees and short time series analysis to better understand when a change in medications is required. The experiments on PPMI (Parkinson Progression Markers Initiative) data demonstrate that using the proposed methodology we can identify some clinically confirmed patients’ symptoms suggesting medications change.


Dopamine Agonist Medication Group Antiparkinson Medication Therapy Modification Multitask Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the PD_manager project, funded within the EU Framework Programme for Research and Innovation Horizon 2020 grant 643706. We acknowledge the financial support from the Slovenian Research Agency (research core fundings No. P2-0209 and P2-0103). This research has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 720270 (HBP SGA1). The data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database ( For up-to-date information on the study, visit PPMI—a public-private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners. List of funding partners can be found at


  1. 1.
    Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML), pp. 55–63 (1998)Google Scholar
  2. 2.
    Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Foltynie, T., Brayne, C., Barker, R.A.: The heterogeneity of idiopathic Parkinson’s disease. J. Neurol. 249(2), 138–145 (2002)CrossRefGoogle Scholar
  4. 4.
    Fox, S.H., Katzenschlager, R., Lim, S.-Y., Ravina, B., Seppi, K., Coelho, M., Poewe, W., Rascol, O., Goetz, C.G., Sampaio, C.: The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 26(S3), S2–S41 (2011)CrossRefGoogle Scholar
  5. 5.
    Gil, D., Johnson, M.: Diagnosing Parkinson by using artificial neural networks and support vector machines. Glob. J. Comput. Sci. Technol. 9(4), 63–71 (2009)Google Scholar
  6. 6.
    Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R., et al.: Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15), 2129–2170 (2008)CrossRefGoogle Scholar
  7. 7.
    Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intell. Inform. Bull. 15(1), 6–14 (2014)Google Scholar
  8. 8.
    Hughes, A.J., Daniel, S.E., Kilford, L., Lees, A.J.: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55(3), 181–184 (1992)CrossRefGoogle Scholar
  9. 9.
    Lewis, S., Foltynie, T., Blackwell, A., Robbins, T., Owen, A., Barker, R.: Heterogeneity of Parkinson disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatry 76(3), 343–348 (2005)CrossRefGoogle Scholar
  10. 10.
    Ma, L.-Y., Chan, P., Gu, Z.-Q., Li, F.-F., Feng, T.: Heterogeneity among patients with Parkinson’s disease: cluster analysis and genetic association. J. Neurol. Sci. 351(1), 41–45 (2015)CrossRefGoogle Scholar
  11. 11.
    Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., Kieburtz, K., Flagg, E., Chowdhury, S., et al.: The Parkinson’s progression markers initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)CrossRefGoogle Scholar
  12. 12.
    National Collaborating Centre for Chronic Conditions. Parkinson’s Disease: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care. Royal College of Physicians, London (2006)Google Scholar
  13. 13.
    Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P.: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf Technol. Biomed. 13(6), 864–873 (2009)CrossRefGoogle Scholar
  14. 14.
    Ramani, R.G., Sivagami, G.: Parkinson disease classification using data mining algorithms. Int. J. Comput. Appl. 32(9), 17–22 (2011)Google Scholar
  15. 15.
    Reijnders, J., Ehrt, U., Lousberg, R., Aarsland, D., Leentjens, A.: The association between motor subtypes and psychopathology in Parkinson’s disease. Parkinsonism Relat. Disord. 15(5), 379–382 (2009)CrossRefGoogle Scholar
  16. 16.
    Riviere, C.N., Reich, S.G., Thakor, N.V.: Adaptive Fourier modeling for quantification of tremor. J. Neurosci. Methods 74(1), 77–87 (1997)CrossRefGoogle Scholar
  17. 17.
    Seppi, K., Weintraub, D., Coelho, M., Perez-Lloret, S., Fox, S.H., Katzenschlager, R., Hametner, E.-M., Poewe, W., Rascol, O., Goetz, C.G., et al.: The movement disorder society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord. 26(Suppl. S3), S42–S80 (2011)CrossRefGoogle Scholar
  18. 18.
    Timmer, J., Gantert, C., Deuschl, G., Honerkamp, J.: Characteristics of hand tremor time series. Biol. Cybern. 70(1), 75–80 (1993)CrossRefzbMATHGoogle Scholar
  19. 19.
    Weintraub, D., Koester, J., Potenza, M.N., Siderowf, A.D., Stacy, M., Voon, V., Whetteckey, J., Wunderlich, G.R., Lang, A.E.: Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch. Neurol. 67(5), 589–595 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anita Valmarska
    • 1
    • 2
    Email author
  • Dragana Miljkovic
    • 1
  • Spiros Konitsiotis
    • 3
  • Dimitris Gatsios
    • 4
  • Nada Lavrač
    • 1
    • 2
  • Marko Robnik-Šikonja
    • 5
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Department of Neurology, Medical SchoolUniversity of IoanninaIoanninaGreece
  4. 4.Department of Biomedical ResearchUniversity of IoanninaIoanninaGreece
  5. 5.Faculty of Computer and Information ScienceUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations