Skip to main content

Cerebellar Transplantation: A Potential Model to Study Repair and Development of Neurons and Circuits in the Cerebellum

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Neuronal transplantation offers the advantages of a unique experimental situation that allows the in vivo study of cell-to-cell interactions between embryonic and adult neural partners. This approach was developed to study the possibility to replace missing neurons in pathological situations. In our model, the cerebellum with spontaneous mutations, Purkinje cell degeneration, nervous, Lurcher (pcd, nr, Lc) affecting Purkinje cells (PCs), this substitution occurs. Embryonic PCs can trigger in adult Bergmann fibers molecular changes required for migration and ultimate synaptic integration of the former, although this integration is not complete because the full contingent of efferent projections failed to establish. The grafting approach evolved as a suitable tool that, through heterotopic and heterochronic transplants, allowed the investigation of the role of cellular and molecular microenvironment on the acquisition of neuronal phenotypes and on the differential ability to regenerate amputated axons of specific populations of central neurons. Finally, new approaches developed in the twenty-first century, with the advent of stem cells and cell reprogramming, are mentioned and some of the earliest cerebellar trials with these pluripotent cells discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. His W. Unsere Körperform und das physiologische Problem ihrer Entstehung. Briefe an einen befreundeten Naturforscher. Leipzig: F.C.W. Vogel; 1874.

    Google Scholar 

  2. His W. Die Entwicklung des menschlichen Gehirns während der ersten Monate. Leipzig: Hirzel; 1904.

    Google Scholar 

  3. Ramón y Cajal S. Estudios sobre la degeneración y regeneración del sistema nervioso. Tomo I: Degeneración y regeneración de los nervios. Madrid: Imprenta Hijos de Nicolas Moya; 1913.

    Google Scholar 

  4. Bizzozero G. Accrescimento e rigenerazione nell’organismo. Archivio per le Scienze Mediche. 1894;18:245–87.

    Google Scholar 

  5. Brody H. Organization of the cerebral cortex. III, a study of aging in the human cerebral cortex. J Comp Neurol. 1955;102:511–56.

    CAS  PubMed  Google Scholar 

  6. Eccles JC. The plasticity of the mammalian central nervous system with special reference to new growth in response to lesions. Naturwissenschaften. 1976;63:8–15.

    CAS  PubMed  Google Scholar 

  7. Haug H, Knebel G, Mecke E, Orün C, Sass NL. The aging of cortical cytoarchitectonics in the light of stereological investigations. Prog Clin Biol Res. 1981;59B:193–7.

    CAS  PubMed  Google Scholar 

  8. Haug H. History of neuromorphometry. J Neurosci Methods. 1986;18:1–17.

    CAS  PubMed  Google Scholar 

  9. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278:412–9.

    CAS  PubMed  Google Scholar 

  10. Salthouse TA. When does age-related cognitive decline begin? Neurobiol Aging. 2009;30:507–14.

    PubMed  PubMed Central  Google Scholar 

  11. Morrison JH, Baxter MG. The aging cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci. 2012;13:240–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramón y Cajal S. Textura del Sistema Nervioso del Hombre y de los Vertebrados, vol. 2. Madrid: Nicolas Moya; 1904. p. 1150.

    Google Scholar 

  13. Bain A. Mind and body. The theories of their relation. New York: D Appleton & Comp; 1873.

    Google Scholar 

  14. Tanzi E. I fatti e le induzioni dell’odierna istologia del sistema nervoso. Rivista Sperimentale di Freniatria e Medicina Legale delle Aliennazioni Mentali. 1893;19:419–72.

    Google Scholar 

  15. Lugaro E. Modern problems in psychiatry (English translation of the book published in 1906 with the title: I Problemi Odierni della Psichiatria, Milan, Sandron). Manchester: The University Press; 1913.

    Google Scholar 

  16. Berlucchi G, Buchtel HA. Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res. 2009;192:307–19.

    CAS  PubMed  Google Scholar 

  17. Sotelo C, Dusart I. Structural plasticity in adult nervous system: an historic perspective. In: Junnier MP, Kernie SG, editors. Endogenous stem cell-based brain remodeling in mammals. New York: Springer; 2014. p. 5–41.

    Google Scholar 

  18. Messier B, Leblond CP, Smart IH. Presence of DNA synthesis and mitosis in the brain of young adult mice. Exp Cell Res. 1958;14:224–6.

    CAS  PubMed  Google Scholar 

  19. Allen E. The cessation of mitosis in the central nervous system of the albino rat (after birth). J Comp Neurol. 1912;22:547–68.

    Google Scholar 

  20. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135:1127–8.

    CAS  PubMed  Google Scholar 

  21. Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec. 1963;145:573–91.

    CAS  PubMed  Google Scholar 

  22. Kaplan MS. Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol. 1981;195:323–38.

    CAS  PubMed  Google Scholar 

  23. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.

    CAS  PubMed  Google Scholar 

  24. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–70.

    PubMed  Google Scholar 

  25. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–16.

    CAS  PubMed  Google Scholar 

  26. Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci. 2003;6:507–18.

    CAS  PubMed  Google Scholar 

  27. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberg S, Saksida LM, Barker RA, Gage FH, Bussey TJ. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lepousez G, Nissant A, Lledo PM. Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron. 2015;86:387–401.

    CAS  PubMed  Google Scholar 

  29. Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci USA. 1986;83:1135–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mobley P, Greengard P. Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc Natl Acad Sci USA. 1985;82:945–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Björklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD. Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 1980;199:307–33.

    PubMed  Google Scholar 

  32. Sotelo C. Molecular layer interneurons of the cerebellum: development and morphological aspects. Cerebellum. 2015;14:534–56.

    PubMed  Google Scholar 

  33. Ramón y Cajal S. The Croonian lecture: la fine structure des centres nerveux. Proc Roy Soc (Lond). 1894;55:444–68.

    Google Scholar 

  34. Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA. 1976;73:208–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science. 2002;295:1904–6.

    CAS  PubMed  Google Scholar 

  36. Harris A, Morgan JI, Pecot M, Soumare A, Osborne A, Soares HD. Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carbopeptidases. Mol Cell Neurosci. 2000;16:578–96.

    CAS  PubMed  Google Scholar 

  37. Sotelo C, Alvarado-Mallart RM. Cerebellar grafting as a tool to analyze new aspects of cerebellar development and plasticity. In: Llinás R, Sotelo C, editors. The cerebellum revisited. New York: Springer; 1991. p. 84–115.

    Google Scholar 

  38. Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21.

    CAS  PubMed  Google Scholar 

  39. Wassef M, Simons J, Tappaz ML, Sotelo C. Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: a quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice. Brain Res. 1986;399:125–35.

    CAS  PubMed  Google Scholar 

  40. Dusart I, Guenet JL, Sotelo C. Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum. 2006;5:163–73.

    PubMed  Google Scholar 

  41. Ghetti B, Norton J, Triarhou LC. Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol. 1987;260:409–22.

    CAS  PubMed  Google Scholar 

  42. Armengol JA, Sotelo C, Angaut P, Alvarado-Mallart RM. Organization of host afferents to cerebellar grafts implanted into kainate lesioned cerebellum in adult rats. Hodological evidence for the specificity of host-graft interactions. Eur J Neurosci. 1989;1:75–93.

    PubMed  Google Scholar 

  43. Rossi F, Strata P. Reciprocal trophic interactions in the adult climbing fibre-Purkinje cell system. Prog Neurobiol. 1995;47:341–69.

    CAS  PubMed  Google Scholar 

  44. Triarhou LC, Norton J, Alyea C, Ghetti B. A quantitative study of the granule cells in the Purkinje cell degeneration (pcd) mutant. Ann Neurol. 1985;18:146. abstract

    Google Scholar 

  45. Triarhou LC, Ghetti B. Monoaminergic nerve terminals in the cerebellar cortex of Purkinje cell degeneration mutant mice: fine structural integrity and modification of cellular environs following loss of Purkinje and granule cells. Neuroscience. 1986;18:795–807.

    CAS  PubMed  Google Scholar 

  46. Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuit in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience. 1987;20:1–22.

    CAS  PubMed  Google Scholar 

  47. Gardette R, Alvarado-Mallart RM, Crepel F, Sotelo C. Electrophysiological demonstration of a synaptic integration of transplanted Purkinje cells in the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience. 1988;24:777–89.

    CAS  PubMed  Google Scholar 

  48. Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res. 1975;94:19–44.

    CAS  PubMed  Google Scholar 

  49. Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Philosophical transactions of the Royal Society of London B. Biol Sci. 1977;281:1–28.

    CAS  Google Scholar 

  50. Friedel RH, Kerjan G, Rayburn H, Schüller U, Sotelo C, Tessier-Lavigne M, Chédotal A. Plexin-B2 controls the development of cerebellar granule cells. J Neurosci. 2007;27:3921–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hawkes R, Gravel C. The modular cerebellum. Prog Neurobiol. 1991;36:309–27.

    CAS  PubMed  Google Scholar 

  52. Wassef M, Zanetta JP, Brehier A, Sotelo C. Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. Dev Biol. 1985;111:129–37.

    CAS  PubMed  Google Scholar 

  53. Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase Cβ4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502:857–71.

    PubMed  Google Scholar 

  54. Sotelo C, Wassef M. Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philosophical transactions of the Royal Society London B. Biol Sci. 1991;331:307–13.

    CAS  Google Scholar 

  55. Rouse RV, Sotelo C. Grafts of dissociated cerebellar cells containing Purkinje cell precursors organize into zebrin I defined compartment. Exp Brain Res. 1990;82:401–7.

    CAS  PubMed  Google Scholar 

  56. Wassef M, Sotelo C, Thomasset M, Granholm A-C, Leclerc N, Rafrafi J, Hawkes R. Expression of compartmentation antigen zebrin-I in cerebellar transplants. J Comp Neurol. 1990;294:223–34.

    CAS  PubMed  Google Scholar 

  57. Mason CA, Gregory E. Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci. 1984;4:1715–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Keep M, Alvarado-Mallart RM, Sotelo C. New insight on the factors orienting the axonal outgrowth of grafted Purkinje cells in the pcd cerebellum. Dev Neurosci. 1992;14:153–65.

    CAS  PubMed  Google Scholar 

  59. Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60.

    CAS  PubMed  Google Scholar 

  60. Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;227:421–3.

    Google Scholar 

  61. Gardette R, Crepel F, Alvarado-Mallart RM, Sotelo C. Fate of grafted embryonic Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. II. Development of synaptic responses: an in vitro study. J Comp Neurol. 1990. 1990;295:188–96.

    CAS  PubMed  Google Scholar 

  62. Sotelo C, Alvarado-Mallart RM, Gardette R, Crepel F. Fate of grafted Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. I. Development of reciprocal graft-host interactions. J Comp Neurol. 1990. 1990;295:165–87.

    CAS  PubMed  Google Scholar 

  63. Sotelo C, Rossi F. Purkinje cell migration and differentiation. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science+Business Media; 2013. p. 147–78.

    Google Scholar 

  64. Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14:124–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci. 1985;5:3310–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–95.

    CAS  Google Scholar 

  67. Caporaso L. Sulla rigenerazione del midollo spinale della coda dei tritoni. Ernst Ziegler’s Beiträge. 1887;5:67–98.

    Google Scholar 

  68. Lorente de Nó R. La regeneración de la médula espinal en las larvas de batracio. Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid. 1921;19:147–83.

    Google Scholar 

  69. Hooker D. Spinal cord regeneration in the young rainbow fish, lebistes reticulatus. J Comp Neurol. 1932;56:277–97.

    Google Scholar 

  70. Tello F. La influencia de1 neurotropismo en la regeneración de los centros nerviosos. Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid. 1911;9:123–59.

    Google Scholar 

  71. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991;11:3398–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Caroni P, Schwab ME. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite outgrowth and fibroblast spreading. J Cell Biol. 1988;106:1281–8.

    CAS  PubMed  Google Scholar 

  73. Dusart I, Sotelo C. Lack of Purkinje cell loss in adult rat cerebellum following protracted axotomy: degenerative changes and regenerative attempts of the severed axons. J Comp Neurol. 1994;347:211–32.

    CAS  PubMed  Google Scholar 

  74. Dusart I, Ghoumari A, Wehrlé R, Morel MP, Bouslama-Oueghlani L, Camand E, Sotelo C. Cell death and axon regeneration of Purkinje cells after axotomy: challenges of classical hypotheses of axon regeneration. Brain Res Rev. 2005;49:300–16.

    CAS  PubMed  Google Scholar 

  75. Rossi F, Gianola S, Corvetti L. The strange case of Purkinje cell axon regeneration and plasticity. Cerebellum. 2006;5:174–82.

    PubMed  Google Scholar 

  76. Dusart I, Morel MP, Wehrlé R, Sotelo C. Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar. J Comp Neurol. 1999;408:399–418.

    CAS  PubMed  Google Scholar 

  77. Rossi F, Jankovski A, Sotelo C. Differential regenerative response of Purkinje cell and inferior olivary axons confronted with embryonic grafts: environmental cues versus intrinsic neuronal determinants. J Comp Neurol. 1995;359:663–77.

    CAS  PubMed  Google Scholar 

  78. Wehrlé R, Caroni P, Sotelo C, Dusart I. Role of GAP-43 in mediating the responsiveness of cerebellar and precerebellar neurons to axotomy. Eur J Neurosci. 2001;13:857–70.

    PubMed  Google Scholar 

  79. Buffo A, Fronte M, Oestreicher AB, Rossi F. Degenerative phenomena and reactive modifications of the adult rat inferior olivary neurons following axotomy and disconnection from their targets. Neuroscience. 1998;85:587–604.

    CAS  PubMed  Google Scholar 

  80. Sugar O, Gerard RW. Spinal cord regeneration in the rat. J Neurophysiol. 1940;3:1–19.

    Google Scholar 

  81. Puchala E, Windle WF. The possibility of structural and functional restitution after spinal cord injury. A review. Exp Neurol. 1977;55:1–42.

    CAS  PubMed  Google Scholar 

  82. Dusart I, Airaksinen MD, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17:3710–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bravin M, Savio T, Strata P, Rossi F. Olivocerebellar axon regeneration and target reinnervation following dissociated Schwann cell grafts in surgically injured cerebella of adult rats. Eur J Neurosci. 1997;9:2634–49.

    CAS  PubMed  Google Scholar 

  84. Gianola S, Rossi F. Long-term injured Purkinje cells are competent for terminal arbor growth, but remain unable to sustain stem axon regeneration. Exp Neurol. 2002;176:25–40.

    PubMed  Google Scholar 

  85. Morel MP, Dusart I, Sotelo C. Sprouting of adult Purkinje cell axons in lesioned mouse cerebellum: “non-permissive” versus “permissive” environment. J Neurocytol. 2002;31:633–47.

    PubMed  Google Scholar 

  86. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004;7:269–77.

    CAS  PubMed  Google Scholar 

  87. Filli L, Schwab ME. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen Res. 2015;10:509–13.

    PubMed  PubMed Central  Google Scholar 

  88. Gage FH, Ray I, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci. 1995;18:159–92.

    CAS  PubMed  Google Scholar 

  89. Bae J-S, Han HS, Youn D-H, Carter JE, Modo M, Schuchman EH, Jin HK. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25:1307–16.

    CAS  PubMed  Google Scholar 

  90. Li J, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahmad I, Hunter RE, Flax JD, Evan Y, Snyder EY, Erickson RP. Neural stem cell implantation extends life in Niemann-Pick C1 mice. J Appl Genet. 2007;48:269–72.

    PubMed  Google Scholar 

  92. Cao Q-1Y, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR. Pluripotent stem cells engrafted in the normal or lesioned adult rat spinal cord are restricted to a glial cell lineage. Exp Neurol. 2001;167:48–58.

    CAS  PubMed  Google Scholar 

  93. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8:723–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G. Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development. 2005;132:4497–508.

    CAS  PubMed  Google Scholar 

  95. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol. 1962;4:256–73.

    CAS  PubMed  Google Scholar 

  96. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    CAS  Google Scholar 

  97. Lujan E, Wernig M. The many roads to Rome: induction of neural precursor cells from fibroblasts. Curr Opin Genet Dev. 2012;22:517–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11:100–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons be defined factors. Nature. 2010;463:1035–41.

    Google Scholar 

  100. Declercq J, Sheshadri P, Verfaillie CM, Kumar A. Zic3 enhances the generation of mouse induced pluripotent stem cells. Stem Cells Dev. 2013;22:2017–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Aruga J, Yokota N, Hashimoto M, Furuichi T, Fukuda M, Mikoshiba K. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem. 1994;63:1880–90.

    CAS  PubMed  Google Scholar 

  102. Das GD, Altman J. Transplanted precursors of nerve cells: their fate in the cerebellums of young rats. Science. 1971;173:637–8.

    CAS  PubMed  Google Scholar 

  103. Rosario CM, Yandava BD, Kosaras B, Zurakowski D, Sidman RL, Snyder EY. Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development. 1997;124:4213–24.

    CAS  PubMed  Google Scholar 

  104. Su H-L, Muguruma K, Matsuo-Takasaki M, Kengaku M, Watanabe K, Sasai Y. Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol. 2006;290:287–96.

    CAS  PubMed  Google Scholar 

  105. Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N. Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci USA. 1990;87:4189–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CJ. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992;68:33–51.

    CAS  PubMed  Google Scholar 

  107. Chen KA, Lanuto D, Zheng T, Steindler DA. Transplantation of embryonic and adult neural stem cells in the granuloprival cerebellum of the weaver mutant mouse. Stem Cells. 2009;27:1625–34.

    PubMed  PubMed Central  Google Scholar 

  108. Tailor J, Kittapa R, Leto K, Gates M, Borel M, Paulsen O, Spitzer S, Karadottir RT, Rossi F, Falk A, Smith A. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency. J Neurosci. 2013;33:12407–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu T, Tang H, Shen Y, Tang Q, Chen L, Wang Z, Zhou P, Xu F, Zhu J. Transplantation of human induced cerebellar granular-like cells improves motor functions in a novel mouse model of cerebellar ataxia. Am J Transl Res. 2016;8:705–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun R, Zhao K, Shen R, Cai L, Yang X, Kuang Y, Mao J, Huang F, Wang Z, Fei J. Inducible and reversible regulation of endogenous gene in mouse. Nucleic Acids Res. 2012;40(21):e166.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Verbeek DS, van Warrenburg BPC. Genetics of the dominant ataxias. Semin Neurol. 2011;31:461–9.

    PubMed  Google Scholar 

  112. Tao O, Shimazaki T, Okada Y, Naka H, Kohda K, Yuzaki M, Mizusawa H, Okano H. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. J Neurosci Res. 2010;88:234–47.

    CAS  PubMed  Google Scholar 

  113. Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, Kakizuka A, Obata K, Yanagawa Y, Hirano T, Sasai Y. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci. 2010;13:1171–80.

    CAS  PubMed  Google Scholar 

  114. Muguruma K, Sasai Y. In vitro recapitulation of neural development using embryonic stem cells: from neurogenesis to histogenesis. Develop Growth Differ. 2012;54:349–57.

    CAS  Google Scholar 

  115. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y. Ptf1a, a HLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47:201–13.

    CAS  PubMed  Google Scholar 

  116. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390:169–72.

    CAS  PubMed  Google Scholar 

  117. Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, Sasai Y, Ono Y. Purkinje cell originate from cerebellar ventricular zone progenitors positive for Neph3 and E-caherin. Dev Biol. 2010;338:202–14.

    CAS  PubMed  Google Scholar 

  118. Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y. Identification of a novel transcriptional co-repressor, Corl2, as a cerebellar Purkinje cell–selective marker. Gene Expr Patterns. 2008;8:418–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantino Sotelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sotelo, C. (2017). Cerebellar Transplantation: A Potential Model to Study Repair and Development of Neurons and Circuits in the Cerebellum. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-59749-2_22

Download citation

Publish with us

Policies and ethics