Skip to main content

Can Cerebellar Neurodevelopmental Disorders Affect Behavioral Disorders or Vice Versa?

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1218 Accesses

Abstract

Recent investigations have been focused on understanding the role of the cerebellum in non-motor behaviors and of the cerebellar dysfunction in neurodevelopmental, neurobehavioral, and schizo-affective disorders . Non-motor behaviors, including emotion, cognition, and social behavior, seem to be modified by impairment of the cerebellar structure-function relationship. Clinically, these behavioral defects have been observed in patients with autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and schizophrenia. These behavioral outcomes have been demonstrated to be associated with prenatal and/or early postnatal damages of cerebro-cerebellar circuits. Concerning to the essential role of the cerebellum in early neurodevelopment, understanding the association between cerebellar injury and long-term alteration in behavior is highly crucial. This chapter’s attempts are to summarize the recent evidence of involvement of the cerebellum in neurodevelopment and behavior and that both these views remain to be revised for declaration of the paradoxical relationship between cerebellar function and behavioral despair, as well as neurodevelopmental disorders including ASD and ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aarsen F, Dongen HV, Paquier P, Mourik MV, Catsman-Berrevoets C. Long term sequelae in children after cerebellar astrocytoma surgery. Neurology. 2004;62:1311–6.

    Article  CAS  PubMed  Google Scholar 

  2. Allen G, Buxton R, Wong E, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.

    Article  CAS  PubMed  Google Scholar 

  3. Allin MPG. Novel insights from quantitative imaging of the developing cerebellum. Semin Fetal Neonatal Med. 2016;21(5):333–8.

    Google Scholar 

  4. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45.

    Article  CAS  PubMed  Google Scholar 

  5. Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A. 1996;93:9985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andreasen NC, Paradiso S, O’Leary DS. Cognitive “dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24:203–18.

    Article  CAS  PubMed  Google Scholar 

  7. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34.

    Article  CAS  PubMed  Google Scholar 

  9. Beebe DW, Ris MD, Armstrong FD, Fontanesi J, Mulhern R, Holmes E, et al. Cognitive and adaptive outcome in low-grade pediatric cerebellar astrocytomas: evidence of diminished cognitive and adaptive function. National Collaborative Research Studies (CCG9891/POG9130). J Clin Oncol. 2005;23:5198–204.

    Article  PubMed  Google Scholar 

  10. Biotteau M, Chaix Y, Albaret J-M. Procedural learning and automatization process in children with developmental coordination disorder and/or developmental dyslexia. Hum Mov Sci. 2015;43:78–89.

    Article  PubMed  Google Scholar 

  11. Blatt GJ. GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol. 2005;71:167–78.

    Article  CAS  PubMed  Google Scholar 

  12. Bora E, Fornito A, Pantelis C, Yucel M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord. 2012;138:9–18.

    Article  PubMed  Google Scholar 

  13. Brossard-Racine M, du Plessis AJ, Limperopoulos C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum. 2015;14:151–64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, Harrison PJ. D-amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry. 2008;13:658–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clouchoux C, Guizard N, Evans AC, du Plessis AJ, Limperopoulos C. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol. 2012;206:173–8.

    Article  PubMed  Google Scholar 

  16. Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex. 2005;7:913–20.

    Article  Google Scholar 

  17. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:1–18.

    Google Scholar 

  19. Danek A, Walker RH. Neuroacanthocytosis. Curr Opin Neurol. 2005;18:386–92.

    Article  PubMed  Google Scholar 

  20. de Zeeuw P, van Belle J, van Dijk S, Weusten J, Koeleman B, Janson E, van Engeland H, Durston S. Imaging gene and environmental effects on cerebellum in attention deficit/hyperactivity disorder and typical development. NeuroImage Clin. 2013;2:103–10.

    Article  Google Scholar 

  21. DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res. 2008;5:207–20.

    Article  CAS  Google Scholar 

  22. Depping MS, Wolf ND, Vasic N, Sambataro F, Hirjak D, Thomann PA, Wolf RC. Abnormal cerebellar volume in acute and remitted major depression. Prog Neuropsychopharmacol Biol Psych. 2016;71:97–102.

    Article  Google Scholar 

  23. Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A. 2002;99:1017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH, Huang XQ, Chan RC, Mechelli A, Gong QY. Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psych. 2012;36(1):11–6.

    Article  Google Scholar 

  25. Durston S, de Zeeuw P, Staal WG. Imaging genetics in ADHD: a focus on cognitive control. Neurosci Biobehav Rev. 2009;33:674–89.

    Article  PubMed  Google Scholar 

  26. Durston S, Hulshoff Pol HE, Schnack HG, Buitelaar JK, Steenhuis MP, Minderaa RB, Kahn RS, van Engeland H. Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psych. 2004;43:332–40.

    Article  Google Scholar 

  27. Durston S, Van Belle J, De Zeeuw P. Differentiating fronto-striatal and frontocerebellar circuits in ADHD. Biol Psychiatry. 2011;69:1178–84.

    Article  PubMed  Google Scholar 

  28. Eastwood SL, Cotter D, Harrison PJ. Cerebellar synaptic protein expression in schizophrenia. Neuroscience. 2001;105:219–29.

    Article  CAS  PubMed  Google Scholar 

  29. Eastwood SL, Law AJ, Everall IP, Harrison PJ. The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry. 2003;8:148–55.

    Article  CAS  PubMed  Google Scholar 

  30. Evarts EV, Thach WT. Motor mechanism of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol. 1969;31:451–98.

    Article  CAS  PubMed  Google Scholar 

  31. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP–mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res. 2015;167:42–56.

    Article  PubMed  Google Scholar 

  33. Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP–mGluR5 signaling pathway. Transl Psychiatry. 2013;3:e271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fatemi SH, Kneeland RE, Liesch SB, Folsom TD. Fragile X mental retardation protein levels are decreased in major psychiatric disorders. Schizophr Res. 2010;124(1–3):246–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fijal BA, Stauffer VL, Kinon BJ, Conley RR, Hoffmann VP, Witte MM, Zhao F, Houston JP. Analysis of gene variants previously associated with iloperidone response in patients with schizophrenia who are treated with risperidone. J Clin Psychol. 2012;73:367–71.

    CAS  Google Scholar 

  36. Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T. A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J Neurochem. 2012;123:886–94.

    Article  CAS  PubMed  Google Scholar 

  37. Galea JM, Vazquez A, Pasricha N, de Xivry J-JO, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21:1761–70.

    Article  PubMed  Google Scholar 

  38. George SM, Wassermann EM, Williams WA, Callahan A, Ketter DA, Basser P, Hallett M, Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 1995;6:1853–6.

    Article  CAS  PubMed  Google Scholar 

  39. Gilmore JH, Schmitt JE, Knickmeyer RC, Smith JK, Lin W, Styner M, Gerig G, Neale MC. Genetic and environmental contributions to neonatal brain structure: a twin study. Hum Brain Mapp. 2010;31:1174–82.

    PubMed  PubMed Central  Google Scholar 

  40. Greenough WT, Black JE, Klintsova A, Bates KE, Weiler IJ. Experience and plasticity in brain structure: possible implications of basic research findings for developmental disorders. In: Broman SH, Fletcher JM, editors. The changing nervous system. New York: Oxford University Press; 1999. p. 51–70.

    Google Scholar 

  41. Greenstein D, Lenroot R, Clausen L, Gogtay N, Rapoport J. Cerebellar development in childhood onset schizophrenia and non-psychotic siblings. Psychiatry Res. 2011;193:131–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Holmes G. A form of familial degeneration of the cerebellum. Brain. 1907;30:466–89.

    Article  Google Scholar 

  43. Holmes G. The cerebellum of man. Brain. 1939;62:1–31.

    Article  Google Scholar 

  44. Hu X, Liu Q, Li B, Tang W, Sun H, Li F, Yang Y, Gong Q, Huang X. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. Eur Neuropsychopharmacol. 2016;26(2):246–54.

    Article  CAS  PubMed  Google Scholar 

  45. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  46. Ito M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci. 2002;978:273–88.

    Article  PubMed  Google Scholar 

  47. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  CAS  PubMed  Google Scholar 

  48. Ivanov I, Murrough JW, Bansal R, Hao X, Peterson BS. Cerebellar morphology and the effects of stimulant medications in youths with attention deficit hyperactivity disorder. Neuropsychopharmacology. 2014;39:718–26.

    Article  PubMed  Google Scholar 

  49. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psych. 2015;72(6):603–11.

    Article  Google Scholar 

  50. Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry. 2003;160:128–33.

    Article  PubMed  Google Scholar 

  51. Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol. 1998;57:645–52.

    Article  CAS  PubMed  Google Scholar 

  52. Kern JK. Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 2003;25:377–82.

    Article  PubMed  Google Scholar 

  53. Kinney DK, Yurgelun-Todd DA, Woods BT. Neurologic signs of cerebellar and cortical sensory dysfunction in schizophrenics and their relatives. Schizophr Res. 1999;35:99–104.

    Article  CAS  PubMed  Google Scholar 

  54. Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorder? J Psychiatry Neurosci. 2006;30:178–86.

    Google Scholar 

  55. Lai CH. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res. 2013;211(1):37–46.

    Article  PubMed  Google Scholar 

  56. Lai CH, Wu YT. The gray matter alterations in major depressive disorder and panic disorder: putative differences in the pathogenesis. J Affect Disord. 2015;186:1–6.

    Article  PubMed  Google Scholar 

  57. Lantieri F, Glessner JT, Hakonarson H, Elia J, Devoto M. Analysis of GWAS top hits in ADHD suggests association to two polymorphisms located in genes expressed in the cerebellum. Am J Med Gen Part B Neuropsychol Gen. 2010;153B:1127–33.

    CAS  Google Scholar 

  58. Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K, Lannan R, Thompson A, Wolfgang CD, Polymeropoulos MH. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry. 2009;14:804–19.

    Article  CAS  PubMed  Google Scholar 

  59. Lee S, Russo D, Redman C. Functional and structural aspects of the Kell blood group system. Transfus Med Rev. 2000;14:93–103.

    Article  CAS  PubMed  Google Scholar 

  60. Lee S, Sha Q, Wu X, Calenda G, Peng J. Expression profiles of mouse Kell, XK, and XPLAC mRNA. J Histochem Cytochem. 2007;55:365–74.

    Article  CAS  PubMed  Google Scholar 

  61. Leiner HC. Solving the mystery of the human cerebellum. Neuropsychol Rev. 2010;20:229–35.

    Article  PubMed  Google Scholar 

  62. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

    Article  CAS  PubMed  Google Scholar 

  63. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(5):1041–50.

    Article  PubMed  Google Scholar 

  64. Limperopoulos C, Bassan H, Gauvreau K, Robertson RL, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120:584–93.

    Article  PubMed  Google Scholar 

  65. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115:688–95.

    Article  PubMed  Google Scholar 

  66. Lungu O, Barakat M, Laventure S, Debas K, Proulx S, Luck D, Stip E. The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr Bull. 2013;39:797–806.

    Article  PubMed  Google Scholar 

  67. Martin P, Albers M. Cerebellum and schizophrenia: a selective review. Schizophr Bull. 1995;21:241–50.

    Article  CAS  PubMed  Google Scholar 

  68. Mukaetova-Ladinska E, Hurt J, Honer WG, Harrington CR, Wischik CM. Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett. 2002;317:161–5.

    Article  CAS  PubMed  Google Scholar 

  69. Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K, Maller JB, Vasquez AA, Asherson P, Chen W, Banaschewski T, Buitelaar J, Ebstein R, Gill M, Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Steinhausen HC, Sonuga-Barke E, Mulas F, Taylor E, Laird N, Lange C, Daly M, Faraone SV. Genome-wide association scan of attention deficit hyperactivity disorder. Am J Med Genet B. 2008;147B:1337–44.

    Article  CAS  Google Scholar 

  70. Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127(12):2572–83.

    Article  PubMed  Google Scholar 

  71. Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, Li K. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel based morphometry study. Eur J Radiol. 2011;80(2):395–9.

    Article  PubMed  Google Scholar 

  72. Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE. Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp. 2007;28:464–73.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Peper JS, Schnack HG, Brouwer RM, Van Baal GC, Pjetri E, Szekely E, van Leeuwen M, van den Berg SM, Collins DL, Evans AC, Boomsma DI, Kahn RS, Hulshoff Pol HE. Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs. Hum Brain Mapp. 2009;30:2184–96.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1:153–70.

    Article  CAS  PubMed  Google Scholar 

  75. Pollack I. Posterior fossa syndrome. Int Rev Neurobiol. 1997;41:411–32.

    Article  CAS  PubMed  Google Scholar 

  76. Portugal LC, Rosa MJ, Rao A, Bebko G, Bertocci MA, Hinze AK, et al. Can emotional and behavioral dysregulation in youth be decoded from functional neuroimaging? PLoS One. 2016;11:e0117603.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Richter S, Schoch B, Kaiser O, Groetschel H, Dimitrova A, Hein-Kropp C, et al. Behavioral and affective changes in children and adolescents with chronic cerebellar lesions. Neurosci Lett. 2005;381:102–7.

    Article  CAS  PubMed  Google Scholar 

  78. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(5):1051–61.

    Article  PubMed  Google Scholar 

  79. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    Article  CAS  PubMed  Google Scholar 

  80. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

    Article  PubMed  Google Scholar 

  81. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum-insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  82. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43:685–91.

    Article  CAS  PubMed  Google Scholar 

  83. Shevelkin AV, Ihenatu C, Pletnikov MV. Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum. Rev Neurosci. 2014;25(2):177–94.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Snider SR. Cerebellar pathology in schizophrenia – cause or consequence? Neurosci Biobehav Rev. 1982;6:47–53.

    Article  CAS  PubMed  Google Scholar 

  85. Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.

    Article  CAS  PubMed  Google Scholar 

  86. Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8:92.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stoodley CJ, Limperopoulos C. Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin Fetal Neonatal Med. 2016;21:356–64. in press

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  89. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stoodley CJ, Schmahmann JD. Functional linguistic topography of the cerebellum. In: Marien P, Manto M, editors. The linguistic cerebellum. Waltham: Academic; 2015. p. 315–35.

    Google Scholar 

  91. Supprian T, Ulmar G, Bauer M, Schüler M, Püschel K, Retz-Junginger P, Schmitt HP, Heinsen H. Cerebellar vermis area in schizophrenic patients – a postmortem study. Schizophr Res. 2000;16:19–28.

    Article  Google Scholar 

  92. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.

    Article  PubMed  Google Scholar 

  93. Ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250:1025–36.

    Article  PubMed  Google Scholar 

  94. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. NeuroImage. 2010;49:63–70.

    Article  PubMed  Google Scholar 

  95. Uhl GR, Drgon T, Johnson C, Fatusin OO, Liu QR, Contoreggi C, Li CY, Buck K, Crabbe J. Higher order addiction molecular genetics: convergent data from genome-wide association in humans and mice. Biochem Pharmacol. 2008;75:98–111.

    Article  CAS  PubMed  Google Scholar 

  96. Ullman MT, Pullman MY. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci Biobehav Rev. 2015;51:205–22.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61:1361–9.

    Article  PubMed  Google Scholar 

  98. Van Soelen IL, Brouwer RM, van Baal GC, Schnack HG, Peper JS, Chen L, Kahn RS, Boomsma DI, Pol HE. Heritability of volumetric brain changes and height in children entering puberty. Hum Brain Mapp 2013. 2011;34(3):713–25.

    Google Scholar 

  99. Vasic N, Walter H, Hose A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord. 2008;109(1–2):107–16.

    Article  PubMed  Google Scholar 

  100. Verhoeven JS, De Cock P, Lagae L, Sunaert S. Neuroimaging of autism. Neuroradiology. 2010;52:3–14.

    Article  PubMed  Google Scholar 

  101. Villanueva R. The cerebellum and neuropsychiatric disorders. Psychiatry Res. 2012;198:527–32.

    Article  PubMed  Google Scholar 

  102. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24:1085–104.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang SS-H, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Weber AM, Egelhoff JC, McKellop JM, Franz DN. Autism and the cerebellum: evidence from tuberous sclerosis. J Autism Dev Disord. 2000;30:511–7.

    Article  CAS  PubMed  Google Scholar 

  105. Wiser AK, Andreasen NC, O’Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport. 1998;9(8):1895–7.

    Article  CAS  PubMed  Google Scholar 

  106. Yeganeh-Doost P, Gruber O, Falkai P, Schmitt A. The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics (Sao Paulo). 2011;66(Suppl 1):71–7.

    Article  Google Scholar 

  107. Yucel K, Nazarov A, Taylor VH, Macdonald K, Hall GB, Macqueen GM. Cerebellar vermis volume in major depressive disorder. Brain Struct Funct. 2013;218(4):851–8.

    Article  PubMed  Google Scholar 

  108. Zhao YJ, Du MY, Huang XQ, Lui S, Chen ZQ, Liu J, Luo Y, Wang XL, Kemp GJ, Gong QY. Brain grey matter abnormalities in medication-free patients with major depressive disorder: a meta-analysis. Psychol Med. 2014;44(14):2927–37.

    Article  PubMed  Google Scholar 

  109. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011;29:145–52.

    Article  PubMed  Google Scholar 

  110. Saeedi Saravi SS, Dehpour AR. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: a review. Life Sci. 2016;145:255–64.

    Google Scholar 

  111. Courchesne E. Neuroanatomic imaging in autism. Pediatrics. 1991;87(5 Pt 2):781–90.

    Google Scholar 

  112. Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum. 2015;8:92.

    Google Scholar 

  113. Claperon A, Hattab C, Armand V, Trottier S, Bertrand O, Ouimet T. The Kell and XK proteins of the Kell blood group are not co-expressed in the central nervous system. Brain Res. 2007;1147:12–24.

    Google Scholar 

  114. Claperon A, Rose C, Gane P, Collec E, Bertrand O, Ouimet T. The kell protein of the common K2 phenotype is a catalytically active metalloprotease while the rare kell K1 antigen is inactive. Identification of novel substrates for the kell protein. J Biol Chem. 2005;280:21272–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Dehpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saeedi Saravi, S.S., Dehpour, A.R. (2017). Can Cerebellar Neurodevelopmental Disorders Affect Behavioral Disorders or Vice Versa?. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-59749-2_17

Download citation

Publish with us

Policies and ethics