Skip to main content

Influence of Anisotropic Blood Vessels Modeling on EEG Source Localization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10337))

Abstract

Reconstruction of source neural activity has an increasing importance due to its high time resolution, promoting its application in diagnosis of neurodegenerative and cognitive tasks. To improve the accuracy of reconstruction, we study the influence of anisotropic blood vessels in the EEG-based source localization solution, including several tissues. To this end, we develop a model that reflects physical properties of the head volume based on collected angiographic data. From obtained results of real data, we find that omission of the anisotropic blood vessels within the forward modeling may result in potential discrepancies larger than 35 \(\upmu \)V and dipole localization errors greater than 15 mm, especially, in deep brain areas.

E. Cuartas-Morales—This work was supported by Prog. Nal. de Formación de Investigadores Generación del Bicentenario, 2012, Conv 528, program Jóvenes Investigadores e Innovadores, 2015, Conv 706, and by the research project 111974455497 founded by COLCIENCIAS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Castaño-Candamil, S., Höhne, J., Martínez-Vargas, J.D., An, X.W., Castellanos-Domínguez, G., Haufe, S.: Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints. NeuroImage 118, 598–612 (2015)

    Article  Google Scholar 

  2. Irimia, A., Goh, S.-Y.M., Torgerson, C.M., Stein, N.R., Chambers, M.C., Vespa, P.M., Van Horn, J.D.: Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment. Clin. Neurol. Neurosurg. 115(10), 2159–2165 (2013)

    Article  Google Scholar 

  3. Montes, V., van Mierlo, P., Strobbe, G., Staelens, S., Vandenberghe, S., Hallez, H.: Influence of skull modeling approaches on EEG source localization. Brain Topogr. 27, 95–111 (2013)

    Article  Google Scholar 

  4. Wtorek, J., Polin, A.: The contribution of blood-flow-induced conductivity changes to measured impedance 52(1), 41–49 (2005)

    Google Scholar 

  5. Cuartas-Morales, E., Cardenas-Pena, D., Castellanos-Dominguez, G.: Influence of anisotropic white matter modeling on EEG source localization, pp. 4920–4923, August 2014

    Google Scholar 

  6. Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  7. Torrado-Carvajal, A., Herraiz, J.L., Hernandez-Tamames, J.A., Jose-Estepar, R.S., Eryaman, Y., Rozenholc, Y., Adalsteinsson, E., Wald, L.L., Malpica, N.: Multi-atlas and label fusion approach for patient-specific MRI based skull estimation. Magn. Reson. Med. (2015, in press)

    Google Scholar 

  8. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth, performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  9. Cuartas-Morales, E., Daniel-Acosta, C., Castellanos-Dominguez, G.: iLU preconditioning of the anisotropic-finite-difference based solution for the EEG forward problem. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 408–418. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_43

    Chapter  Google Scholar 

  10. Wang, P., Wang, H.: A modified FCM algorithm for MRI brain image segmentation. In: 2008 International Seminar on Future BioMedical Information Engineering, vol. 3, pp. 26–29 (2008)

    Google Scholar 

  11. Wolters, C.H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M.A., Macleod, R.S.: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30, 813–826 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work is carried out under grants: Prog. Nal. de Formacion de Investigadores GENERACION DEL BICENTENARIO, Conv 528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cuartas-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cuartas-Morales, E., Torrado-Carvajal, A., Hernandez-Tamames, J.A., Malpica, N., Castellanos-Dominguez, G. (2017). Influence of Anisotropic Blood Vessels Modeling on EEG Source Localization. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics