Skip to main content

Exploring the Physiological Basis of Emotional HRI Using a BCI Interface

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10337))

Abstract

Emotional robots as therapist tools are the next frontier in care assistance, specially in the case of persons diagnosed with autism spectrum disorder (ASD). The current development in emotion estimation by robots is based mainly in face gestures, gaze attention, head position, etc., but that are exactly some areas where ASD patients have more difficulties to express their emotions. We consider that, in order to obtain a good interaction between robots and users, it is very important to have and accurate feedback of the emotional reaction detected during interaction, so we propose the merge between the emotional capabilities of actual robots and electroencephalogram tools to decrease the level of uncertainty of emotion state estimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Diehl, J.J., Schmitt, L.M., Villano, M., Crowell, C.R.: The clinical use of robots for individuals with autism spectrum disorders: a critical review. Res. Autism Spectr. Disord. 6(1), 249–262 (2012)

    Article  Google Scholar 

  2. Scassellati, B.: How social robots will help us to diagnose, treat, and understand autism. Robot. Res. 28, 552–63 (2007)

    Article  Google Scholar 

  3. Jeong, S., Dos Santos, K., Breazeal, C., et al.: Designing a socially assistive robot for pediatric care. In: Proceedings of the 14th International Conference on Interaction Design and Children, pp. 387–390. ACM, New York (2015)

    Google Scholar 

  4. Breazeal, C., Scassellati, B.: A context-dependent attention system for a social robot. In: IJCAI 1999 Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 1146–1153 (1999)

    Google Scholar 

  5. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42(3), 143–166 (2003)

    Article  MATH  Google Scholar 

  6. Scassellati, B., Admoni, H., Matarić, M.: Robots for use in autism research. Annu. Rev. Biomed. Eng. 14, 275–294 (2012)

    Article  Google Scholar 

  7. Ismail, L.I., Shamsudin, S., Yussof, H., Hanapiah, F.A., Zahari, N.I.: Estimation of concentration by eye contact measurement in robot- based intervention program with autistic children. Procedia Eng. 41, 1548–1552 (2012)

    Article  Google Scholar 

  8. Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: Proceedings of IEEE 9th International Conference on Rehabilitation Robotics (ICORR 2005), 28 June–1 July, Chicago, pp. 465–68. IEEE, Piscataway (2005)

    Google Scholar 

  9. Tapus, A., Mataric, M.J., Scassellati, B.: The grand challenges in socially assistive robotics. IEEE Robot. Autom. Mag. Spec. Issue Grand Challenges Robot 14(1), 35–42 (2007)

    Article  Google Scholar 

  10. Senju, A., Johnson, M.H.: Atypical eye contact in autism: models, mechanisms and development. Neurosci. Biobehav. Rev. 33, 1204–1214 (2009)

    Article  Google Scholar 

  11. Jeong, S., Logan, D.E., Goodwin, M.S., Graca, S., O’Connell, B., Goodenough, H., Plummer, L.: A social robot to mitigate stress, anxiety, and pain in hospital pediatric care. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts pp. 103–104. ACM (2015)

    Google Scholar 

  12. Laufs, H., et al.: EEG-correlated fMRI of human alpha activity. Neuroimage 19(4), 1463–1476 (2003)

    Article  Google Scholar 

  13. Nunez, P.L.: Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav. Brain Sci. 23(3), 371–398 (2000)

    Article  Google Scholar 

  14. Gable, P.A., Poole, B.D.: Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures. Soc. Cogn. Affect. Neurosci. 9(2), 182–190 (2014)

    Article  Google Scholar 

  15. Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V.: Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience 164(4), 1588–1600 (2009)

    Article  Google Scholar 

  16. Leite, J., Carvalho, S., Galdo-Alvarez, S., Alves, J., Sampaio, A., Gonçalves, Ó.F.: Affective picture modulation: valence, arousal, attention allocation and motivational significance. Int. J. Psychophysiol. 83(3), 375–381 (2012)

    Article  Google Scholar 

  17. Liu, Y.-H., Wu, C.-T., Cheng, W.-T., Hsiao, Y.-T., Chen, P.-M., Teng, J.-T.: Emotion recognition from single-trial EEG based on Kernel Fisher’s emotion pattern and imbalanced quasiconformal kernel support vector machine. Sensors 14(8), 13361–13388 (2014)

    Article  Google Scholar 

  18. Fanselow, M.S.: Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1(4), 429–438 (1994)

    Article  Google Scholar 

  19. Centers for Disease Control and Prevention (CDC). Autism spectrum disorders (2011). http://www.cdc.gov/ncbddd/autism/index.html

  20. Jeong, S., Logan, D., Goodwin, M., et al.: Challenges conducting child-robot interaction research in a pediatric inpatient care context. In: The First Workshop on Evaluating Child-Robot Interaction Held in Conjunction with the Seventh International Conference on Social Robotics (2015)

    Google Scholar 

  21. DiSalvo, C., et al.: All robots are not equal: The design and perception of humanoid robot heads. In: Proceedings of the Conference on Designing Interactive Systems (2002)

    Google Scholar 

  22. Wada, K., Shibata, T., Asada, T., Musha, T.: Robot therapy for prevention of dementia at home. Journal of Robotics and Mechatronics 19(6), 691(2007)

    Google Scholar 

  23. SoftBank Robotics Europe: ALMood API. NAOqi Documentation Center. http://doc.aldebaran.com/2-5/naoqi/core/almood.html

Download references

Acknowledgements

We want to acknowledge Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, from Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Álvarez-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Val-Calvo, M. et al. (2017). Exploring the Physiological Basis of Emotional HRI Using a BCI Interface. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics