Skip to main content

Conditional Entropy Estimates for Distress Detection with EEG Signals

  • Conference paper
  • First Online:
Natural and Artificial Computation for Biomedicine and Neuroscience (IWINAC 2017)

Abstract

Recently, distress has become a major problem in most advanced societies because of its negative side effects in physical and mental health. In this sense, the assessment of different physiological signals such as electroencephalogram (EEG) provides new insights about the body’s reaction against distressful stimuli. Moreover, the non-linear and dynamic behaviour of the brain suggests the application of non-linear methodologies for EEG analysis. In this work, a symbolic technique called conditional entropy was applied for the assessment of 279 32-EEG channel segments of calm and distress emotional states. Results of all EEG electrodes were combined in a simple decision tree classifier, reporting a discriminatory power above 70%. Furthermore, a decreasing tendency of irregularity when changing from calm to distress conditions was observed for all EEG channels. The simplicity of this classification model allows an easy interpretation of the results, together with a possible implementation of the algorithm in a real-time monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bender, R.E., Alloy, L.B.: Life stress and kindling in bipolar disorder: review of the evidence and integration with emerging biopsychosocial theories. Clin. Psychol. Rev. 31(3), 383–398 (2011)

    Article  Google Scholar 

  2. Breiman, L.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  3. Brzozowski, B., Mazur-Bialy, A., Pajdo, R., Kwiecien, S., Bilski, J., Zwolinska-Wcislo, M., Mach, T., Brzozowski, T.: Mechanisms by which stress affects the experimental and clinical inflammatory bowel disease (IBD): role of brain-gut axis. Curr. Neuropharmacol. 14, 892–900 (2016)

    Article  Google Scholar 

  4. Cao, Y., Cai, L., Wang, J., Wang, R., Yu, H., Cao, Y., Liu, J.: Characterization of complexity in the electroencephalograph activity of Alzheimer’s disease based on fuzzy entropy. Chaos 25(8), 083116 (2015)

    Article  MathSciNet  Google Scholar 

  5. Castillo, J.C., Castro-González, A., Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A., Salichs, M.A.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. 8(2), 357–367 (2016)

    Article  Google Scholar 

  6. Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans. Syst. Man Cybern. Part A 41(6), 1052–1063 (2011)

    Article  Google Scholar 

  7. Duru, D.G., Duru, A.D., Barkana, D.E., Sanli, O., Ozkan, M.: Assessment of surgeon’s stress level and alertness using EEG during laparoscopic simple nephrectomy. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 452–455. IEEE (2013)

    Google Scholar 

  8. Fernández-Caballero, A., Martínez-Rodrigo, A., Pastor, J.M., Castillo, J.C., Lozano-Monasor, E., López, M.T., Zangróniz, R., Latorre, J.M., Fernández-Sotos, A.: Smart environment architecture for emotion recognition and regulation. J. Biomed. Inform. 64, 55–73 (2016)

    Article  Google Scholar 

  9. García-Martínez, B., Martínez-Rodrigo, A., Zangróniz, R., Pastor, J., Alcaraz, R.: Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings. Entropy 18(6), 221 (2016)

    Article  MathSciNet  Google Scholar 

  10. Healey, J., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)

    Article  Google Scholar 

  11. Hosseini, S.A., Naghibi-Sistani, M.B.: Classification of Emotional Stress Using Brain Activity. INTECH Open Access Publisher, Rijeka (2011)

    Google Scholar 

  12. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)

    Article  Google Scholar 

  13. Koelstra, S., Mühl, C., Soleymani, M., Lee, J., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: a database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  14. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based emotion recognition and its applications. In: Gavrilova, M.L., Tan, C.J.K., Sourin, A., Sourina, O. (eds.) Transactions on Computational Science XII. LNCS, vol. 6670, pp. 256–277. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22336-5_13

    Chapter  Google Scholar 

  15. Martínez-Rodrigo, A., Alcaraz, R., García-Martínez, B., Zangróniz, R., Fernández-Caballero, A.: Non-lineal EEG modelling by using quadratic entropy for arousal level classification. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 3–13. Springer, Cham (2016). doi:10.1007/978-3-319-39687-3_1

    Chapter  Google Scholar 

  16. Martínez-Rodrigo, A., García-Martínez, B., Alcaraz, R., Pastor, J.M., Fernández-Caballero, A.: EEG mapping for arousal level quantification using dynamic quadratic entropy. In: Lindgren, H., De Paz, J.F., Novais, P., Fernández-Caballero, A., Yoe, H., Ramírez, A.J., Villarrubia, G. (eds.) ISAmI 2016. AISC, vol. 476, pp. 207–214. Springer, Cham (2016). doi:10.1007/978-3-319-40114-0_23

    Chapter  Google Scholar 

  17. Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Fernández-Caballero, A.: Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 213–223. Springer, Cham (2015). doi:10.1007/978-3-319-26508-7_21

    Chapter  Google Scholar 

  18. Minguillon, J., Lopez-Gordo, M.A., Pelayo, F.: Stress assessment by prefrontal relative gamma. Front. Comput. Neurosci. 10(September), 1–9 (2016)

    Google Scholar 

  19. Mönnikes, H., Tebbe, J.J., Hildebrandt, M., Arck, P., Osmanoglou, E., Rose, M., Klapp, B., Wiedenmann, B., Heymann-Mönnikes, I.: Role of stress in functional gastrointestinal disorders. Evidence for stress-induced alterations in gastrointestinal motility and sensitivity. Dig. Dis. 19(3), 201–211 (2001)

    Article  Google Scholar 

  20. Morris, J.D.: Observations SAM: the self-assessment manikin - an efficient cross-cultural measurement of emotional response. J. Advert. Res. 35(6), 63–68 (1995)

    Google Scholar 

  21. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1995)

    Google Scholar 

  22. Pickering, T.G.: Mental stress as a causal factor in the development of hypertension and cardiovascular disease. Curr. Hypertens. Rep. 3(3), 249–254 (2001)

    Article  Google Scholar 

  23. Porta, A., Baselli, G., Liberati, D., Montano, N., Cogliati, C., Gnecchi-Ruscone, T., Malliani, A., Cerutti, S.: Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 78(1), 71–78 (1998)

    Article  MATH  Google Scholar 

  24. Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A., Cerutti, S.: Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 48(11), 1282–1291 (2001)

    Article  Google Scholar 

  25. Reisman, S.: Measurement of physiological stress. In: Proceedings of the IEEE 1997 23rd Northeast Bioengineering Conference, pp. 21–23. IEEE, May 1997

    Google Scholar 

  26. Tran, Y., Thuraisingham, R., Wijesuriya, N., Nguyen, H., Craig, A.: Detecting neural changes during stress and fatigue effectively: a comparison of spectral analysis and sample entropy. In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering, pp. 350–353. IEEE (2007)

    Google Scholar 

  27. Valenza, G., Lanata, A., Scilingo, E.P.: The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3(2), 237–249 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI)/European Regional Development Fund under HA-SYMBIOSIS (TIN2015-72931-EXP), Vi-SMARt (TIN2016-79100-R) and EmoBioFeedback (DPI2016-80894-R) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz García-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García-Martínez, B., Martínez-Rodrigo, A., Fernández-Caballero, A., González, P., Alcaraz, R. (2017). Conditional Entropy Estimates for Distress Detection with EEG Signals. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics