Skip to main content

Protein Folding Modeling with Neural Cellular Automata Using the Face-Centered Cubic Model

  • Conference paper
  • First Online:
Natural and Artificial Computation for Biomedicine and Neuroscience (IWINAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10337))

Abstract

We have modeled the protein folding process with cellular automata using the Face-Centered Cubic lattice model. An artificial neural network implements a cellular automaton-like scheme that defines the moves of each of the amino acids of the protein chain and through several time iterations until a folded protein is obtained. Differential Evolution was used to evolve these neural cellular automata, which take the information for defining the folding process from the energy space considered in the lattice model. Different proteins were used for testing the process, comparing the results of the folded structures against other methods of direct prediction of the final folded conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Backofen, R., Will, S.: A constraint-based approach to fast and exact structure prediction in three-dimensional protein models. Constraints 11(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calabretta, R., Nolfi, S., Parisi, D.: An artificial life model for predicting the tertiary structure of unknown proteins that emulates the folding process. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 862–875. Springer, Heidelberg (1995). doi:10.1007/3-540-59496-5_349

    Chapter  Google Scholar 

  3. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1998)

    MATH  Google Scholar 

  4. Danks, G., Stepney, S., Caves, L.: Protein folding with stochastic L-systems. In: Proceedings of the Artificial Life XI, pp. 150–157 (2008)

    Google Scholar 

  5. Dill, K.A.: Dominant forces in protein folding. Biochemestry 29, 7133–7155 (1990)

    Article  Google Scholar 

  6. Dotu, I., Cebrián, M., Van Hentenryck, P.V., Clote, P.: On lattice protein structure prediction revisited. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1620–1632 (2011)

    Article  Google Scholar 

  7. Hirst, J.D.: The evolutionary landscape of functional model proteins. Protein Eng. 12(9), 721–726 (1999)

    Article  Google Scholar 

  8. Krasnogor, N., Terrazas, G., Pelta, D.A., Ochoa, G.: A critical view of the evolutionary design of self-assembling systems. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 179–188. Springer, Heidelberg (2006). doi:10.1007/11740698_16

    Chapter  Google Scholar 

  9. Olson, B., De-Jong, K., Shehu, A.: Off-lattice protein structure prediction with homologous crossover. In: Proceedings Conference on Genetic and evolutionary computation - GECCO 2013, pp. 287–294 (2013)

    Google Scholar 

  10. Patton, W.P., Punch, W.F., Goldman, E.: A standard genetic algorithm approach to native protein conformation prediction. In: Proceedings of 6th International Conference on Genetic Algorithms, pp. 574–581 (1995)

    Google Scholar 

  11. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  12. Rashid, M.A., Hoque, M.T., Newton, M.A.H., Pham, D.N., Sattar, A.: A new genetic algorithm for simplified protein structure prediction. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 107–119. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35101-3_10

    Chapter  Google Scholar 

  13. Rosetta system. http://www.rosettacommons.org

  14. Santos, J., Diéguez, M.: Differential evolution for protein structure prediction using the HP model. In: Ferrández, J.M., Álvarez Sánchez, J.R., Paz, F., Toledo, F.J. (eds.) IWINAC 2011 Part I. LNCS, vol. 6686, pp. 323–333. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21344-1_34

    Chapter  Google Scholar 

  15. Santos, J., Villot, P., Diéguez, M.: Cellular automata for modeling protein folding using the HP model. In: Proceedings IEEE Congress on Evolutionary Computation - IEEE-CEC, pp. 1586–1593 (2013)

    Google Scholar 

  16. Santos, J., Villot, P., Diéguez, M.: Emergent protein folding modeled with evolved neural cellular automata using the 3D HP model. J. Comput. Biol. 21(11), 823–845 (2014)

    Article  Google Scholar 

  17. Shatabda, S., Newton, M.H., Pham, D.N., Sattar, A.: Memory-based local search for simplified protein structure prediction. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine - BCB 2012, pp. 345–352 (2012)

    Google Scholar 

  18. Shatabda, S., Newton, M.H., Rashid, M.A., Sattar, A.: An efficient encoding for simplified protein structure prediction using genetic algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation - IEEE-CEC 2013, pp. 1217–1224 (2013)

    Google Scholar 

  19. Shmygelska, A., Hoos, H.H.: An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. Bioinformatics 6, 30 (2005)

    Google Scholar 

  20. Tsay, J.-J., Su, S.-C.: An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets. Proteome Sci. 11(1), S19 (2013)

    Article  Google Scholar 

  21. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol. Biol. 231(1), 75–81 (1993)

    Article  Google Scholar 

  22. Zhao, X.: Advances on protein folding simulations based on the lattice HP models with natural computing. Appl. Soft Comput. 8, 1029–1040 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Economy and Competitiveness of Spain (project TIN2013-40981-R) and Xunta de Galicia (project GPC ED431B 2016/035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Varela, D., Santos, J. (2017). Protein Folding Modeling with Neural Cellular Automata Using the Face-Centered Cubic Model. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics