Skip to main content

Automorphic Integral Transforms for Classical Groups II: Twisted Descents

  • Chapter
  • First Online:
Representation Theory, Number Theory, and Invariant Theory

Part of the book series: Progress in Mathematics ((PM,volume 323))

Abstract

The paper (Jiang, Automorphic forms: L-functions and related geometry: assessing the legacy of I.I. Piatetski-Shapiro. Contemporary mathematics, vol 614. American Mathematical Society, Providence, RI, 2014, pp 179–242) forms Part I of the theory of Automorphic Integral Transforms for Classical Groups, where the first named author made a conjecture on how the global Arthur parameters may govern the structure of the Fourier coefficients of the automorphic representations in the corresponding global Arthur packets. This leads to a better understanding of the automorphic kernel functions with which the integral transforms yield conjecturally the endoscopic correspondences for classical groups. In this paper, we discuss the Twisted Automorphic Descent method and its variants that construct concrete modules for irreducible cuspidal automorphic representations of general classical groups. When the global Arthur parameters are generic, the details of the theory are referred to Jiang et al. (2015, accepted by IMRN), Jiang and Zhang (2015, submitted; 2015, in preparation), which extend the automorphic descent method of Ginzburg-Rallis-Soudry (The descent map from automorphic representations of GL(n) to classical groups. World Scientific, Singapore, 2011) to great generality.

Dedicated to Professor Roger Howe on the occasion of his 70th birthday

The research of the first named author is supported in part by the NSF Grants DMS–1301567, and that of the second named author is supported in part by the National University of Singapore’s start-up grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aizenbud, A; Gourevitch, D; Rallis, S; Schiffmann, G. Multiplicity one theorems. Ann. of Math. (2) 172 (2010), no. 2, 1407–1434.

    Article  MathSciNet  Google Scholar 

  2. Arthur, James The endoscopic classification of representations: Orthogonal and Symplectic groups. American Mathematical Society Colloquium Publications, 61. AMS, Providence, RI, 2013.

    Google Scholar 

  3. Arthur, James Characters and Modules. Open problems in honor of Wilfried Schmid, Problem 5, in Representation Theory, Automorphic Forms, and Complex Geometry–A conference in honor of the 70th birthday of Wilfried Schmid May 20–23, 2013, Harvard University.

    Google Scholar 

  4. Barbasch, D. The unitary spherical spectrum for split classical groups. J. Inst. Math. Jussieu 9 (2010), no. 2, 265–356.

    Article  MathSciNet  Google Scholar 

  5. Bernstein, J.; Zelevinsky, A. Representations of the group GL(n, F) whereFis a non-archimedean local field. Russian Math. Surveys, 31:3 (1976), 1–68.

    Google Scholar 

  6. Bernstein, J.; Zelevinsky, A. Induced representations of reductivep-adic groups. Ann. scient.Éc. Norm.Sup., 4e série 10(1977), 441–472.

    Google Scholar 

  7. Beuzart-Plessis, R. La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes unitaires. (French) [Local Gross-Prasad conjecture for tempered representations of unitary groups] Mm. Soc. Math. Fr. (N.S.) 2016, no. 149, vii+191 pp.

    Google Scholar 

  8. Burger, M.; Li, J.-S.; Sarnak, P. Ramanujan duals and automorphic spectrum. Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 253–257.

    Article  MathSciNet  Google Scholar 

  9. Burger, M.; Sarnak, P. Ramanujan duals. II. Invent. Math. 106 (1991), no. 1, 1–11.

    Article  MathSciNet  Google Scholar 

  10. Clozel, Laurent The ABS principle: consequences forL 2(GH). On certain L-functions, 99–106, Clay Math. Proc., 13, Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  11. Gan, Wee Teck; Gross, Benedict H.; Prasad, Dipendra Symplectic local root numbers, central criticalL-values, and restriction problems in the representation theory of classical groups. vol. 346, pp 1–109, Astérisque (2012)

    Google Scholar 

  12. Ginzburg, David; Jiang, Dihua; Rallis, Stephen On the nonvanishing of the central value of the Rankin-Selberg L-functions. J. Amer. Math. Soc. 17 (2004), no. 3, 679–722.

    Article  MathSciNet  Google Scholar 

  13. Ginzburg, David; Jiang, Dihua; Rallis, Stephen On the nonvanishing of the central value of the Rankin-Selberg L-functions. II. Automorphic representations, L-functions and applications: progress and prospects, 157–191, Ohio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin, 2005.

    Google Scholar 

  14. Ginzburg, David; Jiang, Dihua; Rallis, Stephen; Soudry, David L-functions for symplectic groups using Fourier-Jacobi models. Arithmetic geometry and automorphic forms, 183–207, Adv. Lect. Math. (ALM), 19, Int. Press, Somerville, MA, 2011.

    Google Scholar 

  15. Ginzburg, David; Jiang, Dihua; Soudry, David On correspondences between certain automorphic forms onSp 4n and \(\widetilde{Sp}_{2n}\). Israel J. of Math. 192 (2012), 951–1008.

    Google Scholar 

  16. Ginzburg, David; Rallis, Stephen; Soudry, David L-functions for symplectic groups. Bull. Soc. Math. France 126 (1998), no. 2, 181–244.

    Google Scholar 

  17. Ginzburg, D.; Rallis, S.; Soudry, D. The descent map from automorphic representations of GL(n) to classical groups. World Scientific, Singapore, 2011.

    Book  Google Scholar 

  18. Howe, R. Wave front sets of representations of Lie groups. Automorphic forms, representation theory and arithmetic (Bombay, 1979), pp. 117–140, Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst. Fundamental Res., Bombay, 1981.

    Google Scholar 

  19. Howe, R. Automorphic forms of low rank. Noncommutative harmonic analysis and Lie groups, 211–248, Lecture Notes in Math., 880, Springer, 1981.

    Google Scholar 

  20. Howe, Roger On a notion of rank for unitary representations of the classical groups. Harmonic analysis and group representations, 223–331, Liguori, Naples, 1982.

    Google Scholar 

  21. Ikeda, Tamotsu On the theory of Jacobi forms and Fourier-Jacobi coefficients of Eisenstein series. J. Math. Kyoto Univ. 34 (1994), no. 3, 615–636.

    Article  MathSciNet  Google Scholar 

  22. Jiang, Dihua Automorphic integral transforms for classical groups I: endoscopy correspondences. Automorphic Forms: L-functions and related geometry: assessing the legacy of I.I. Piatetski-Shapiro Contemporary Mathematics, Vol. 614, 179–242, 2014, AMS

    Google Scholar 

  23. Jiang, Dihua On tensor productL-functions and Langlands functoriality. submitted to Shahidi’s 70th birthday volume, 2016.

    Google Scholar 

  24. Jiang, Dihua and Liu, Baiying Fourier coefficients for automorphic forms on quasisplit classical groups. Advances in the Theory of Automorphic Forms and Their L-functions. Contemporary Math. 664 (2016), 187–208, AMS.

    Google Scholar 

  25. Jiang, Dihua and Liu, Baiying On cuspidality of global Arthur packets for symplectic groups. submitted, 2015.

    Google Scholar 

  26. Jiang, Dihua and Liu, Baiying Twisted automorphic descents and irreducible modules. preliminary version 2016.

    Google Scholar 

  27. Jiang, Dihua; Liu, Baiying; and Savin, Gordan Raising nilpotent orbits in wave-front sets. Submitted 2016.

    Google Scholar 

  28. Jiang, Dihua; Liu, Baiying; Xu, Bin; and Zhang, Lei The Jacquet-Langlands correspondence via twisted descent. accepted by IMRN, 2015.

    Google Scholar 

  29. Jiang, Dihua; Liu, Baiying; Zhang, Lei Poles of certain residual Eisenstein series of classical groups. Pacific J. of Math. Vol. 264, No. 1 (2013), 83–123.

    Article  MathSciNet  Google Scholar 

  30. Jiang, Dihua; Sun, Binyong; Zhu, Chen-Bo Uniqueness of Bessel models: the archimedean case. Geom. Funct. Anal. Vol. 20 (2010) 690–709.

    Article  MathSciNet  Google Scholar 

  31. Jiang, Dihua; Zhang, Lei A product of tensor product L-functions for classical groups of hermitian type. Geom. Funct. Anal. 24 (2014), no. 2, 552–609.

    Article  MathSciNet  Google Scholar 

  32. Jiang, Dihua; Zhang, Lei Arthur parameters and cuspidal automorphic modules of classical groups. submitted 2015.

    Google Scholar 

  33. Jiang, Dihua; Zhang, Lei Arthur parameters and cuspidal automorphic modules of classical groups II, Fourier-Jacobi case. in preparation 2015.

    Google Scholar 

  34. Kaletha, Tasho Rigid inner forms of real andp-adic groups. Ann. of Math. (2) 184 (2016), no. 2, 559–632.

    Article  MathSciNet  Google Scholar 

  35. Kaletha, Tasho Global rigid inner forms and multiplicities of discrete automorphic representations. preprint.

    Google Scholar 

  36. Kaletha, Tasho; Minguez, Alberto; Shin, Sug Woo; White, Paul-James Endoscopic Classification of Representations: Inner Forms of Unitary Groups. arXiv:1501.01667

    Google Scholar 

  37. Kawanaka, N. Shintani lifting and Gelfand-Graev representations. The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 147–163, Proc. Sympos. Pure Math., 47, Part 1, Amer. Math. Soc., Providence, RI, 1987.

    Google Scholar 

  38. Langlands, R. Euler products. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. Yale Mathematical Monographs, 1. Yale University Press, New Haven, Conn.-London, 1971.

    Google Scholar 

  39. Liu, Baiying On Fourier coeffcients of automorphic forms and structure of global Arthur packets. Submitted. (2015)

    Google Scholar 

  40. Liu, Yifeng; Sun, Binyong Uniqueness of Fourier-Jacobi models: the Archimedean case. J. Funct. Anal. 265 (2013), no. 12, 3325–3344.

    Article  MathSciNet  Google Scholar 

  41. Mœglin, C. Front d’onde des représentations des groupes classiques p-adiques. Amer. J. Math. 118 (1996), no. 6, 1313–1346.

    Article  MathSciNet  Google Scholar 

  42. Mœglin, C. Formes automorphes de carré intégrable noncuspidales. Manuscripta Math. 127 (2008), no. 4, 411–467.

    Article  MathSciNet  Google Scholar 

  43. Mœglin, C. Image des opérateurs d’entrelacements normalisés et pôles des séries d’Eisenstein. Adv. Math. 228 (2011), no. 2, 1068–1134.

    Article  MathSciNet  Google Scholar 

  44. Mœglin, C.; Waldspurger, J.-L. Modèles de Whittaker dégénérés pour des groupesp-adiques. (French) Math. Z. 196 (1987), no. 3, 427–452.

    Google Scholar 

  45. Mœglin, C.; Waldspurger, J.-L. Spectral decomposition and Eisenstein series. Cambridge Tracts in Mathematics, 113. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  46. Mœglin, C.; Waldspurger, J.-L. La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général. Sur les conjectures de Gross et Prasad. II. Astérisque No. 347 (2012), 167–216.

    MATH  Google Scholar 

  47. Mok, Chung Pang Endoscopic classification of representations of quasi-split unitary groups. Mem. of AMS, 235 (2015), No. 1108.

    Article  MathSciNet  Google Scholar 

  48. G. Muic and M. Tadic, Unramified unitary duals for split classical p-adic groups; the topology and isolated representations. On certain L-functions, 375–438, Clay Math. Proc., 13, Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  49. Shahidi, F. Eisenstein Series and AutomorphicL-functions. Colloquium Publications, Vol 58, 2010, AMS.

    Google Scholar 

  50. Shen, Xin Unramified computation of tensor L-functions on symplectic groups. Thesis (Ph.D.)–University of Minnesota. 2013. 121 pp.

    Google Scholar 

  51. Shen, Xin The Whittaker-Shintani functions for symplectic groups. Int. Math. Res. Not. IMRN 2014, no. 21, 5769–5831.

    Article  MathSciNet  Google Scholar 

  52. Soudry, David Rankin-Selberg integrals, the descent method, and Langlands functoriality. International Congress of Mathematicians. Vol. II, 1311–1325, Eur. Math. Soc., Zürich, 2006.

    Google Scholar 

  53. Soudry, David Notes for calculations of unramified local zeta integrals. private communication.

    Google Scholar 

  54. Sun, Binyong Multiplicity one theorems for Fourier-Jacobi models. Amer. J. Math. 134 (2012), no. 6, 1655–1678.

    Article  MathSciNet  Google Scholar 

  55. Sun, Binyong; Zhu, Chen-Bo Multiplicity one theorems: the Archimedean case. Ann. of Math. (2) 175 (2012), no. 1, 23–44.

    Article  MathSciNet  Google Scholar 

  56. Tadić, Marko Spherical unitary dual of general linear group over non-Archimedean local field. Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 47–55.

    Article  MathSciNet  Google Scholar 

  57. Vogan, David The local Langlands conjecture. Representation theory of groups and algebras, 305–379, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  58. Waldspurger, J.-L. Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés. Astérisque 269, 2001.

    Google Scholar 

  59. Waldspurger, J.-L. La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes spéciaux orthogonaux. Sur les conjectures de Gross et Prasad. II. (French) Astérisque No. 347 (2012).

    Google Scholar 

  60. Zhang, Wei Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups. Ann. of Math. (2) 180 (2014), no. 3, 971–1049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dihua Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jiang, D., Zhang, L. (2017). Automorphic Integral Transforms for Classical Groups II: Twisted Descents. In: Cogdell, J., Kim, JL., Zhu, CB. (eds) Representation Theory, Number Theory, and Invariant Theory. Progress in Mathematics, vol 323. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59728-7_11

Download citation

Publish with us

Policies and ethics