Advertisement

Human Information Interaction, Artificial Intelligence, and Errors

  • Stephen RussellEmail author
  • Ira S. Moskowitz
  • Adrienne Raglin
Chapter

Abstract

In a time of pervasive and increasingly transparent computing, humans will interact more with information objects, and less with the computing devices that define them. Artificial Intelligence (AI) will be the proxy for humans’ interaction with information. Because interaction creates opportunities for error, the trend towards AI-augmented human information interaction (HII) will mandate an increased emphasis on cognition-oriented information science research, and new ways of thinking about errors and error handling. In this chapter, a review of HII and its relationship to AI is presented, with a focus on errors in this context.

References

  1. Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999, September). Towards a better understanding of context and context-awareness. In International Symposium on Handheld and Ubiquitous Computing (pp. 304-307). Springer Berlin Heidelberg.Google Scholar
  2. Ackerman, E. (2016). Fatal Tesla self-driving car crash reminds us that robots aren’t perfect. IEEE-Spectrum, 1.Google Scholar
  3. ACM SIGCHI. (1992) ACM SIGCHI curricula for human-computer interaction. New York, NY, USA.Google Scholar
  4. Alaieri, F., & Vellino, A. (2016). Ethical Decision Making in Robots: Autonomy, Trust and Responsibility. In International Conference on Social Robotics (pp. 159-168). Springer International Publishing.Google Scholar
  5. Albers, M. J. (2011). Usability and information relationships: Considering content relationships and contextual awareness when testing complex information. Usability of complex information systems: Evaluation of user interaction, 3-16.Google Scholar
  6. Albers, M. J. (2015, June). Human–Information Interaction with Complex Information for Decision-Making. In Informatics (Vol. 2, No. 2, pp. 4-19). Multidisciplinary Digital Publishing Institute http://www.mdpi.com/2227-9709/2/2/4/htm.
  7. Alexander, B., Barrett, K., Cumming, S., Herron, P., Holland, C., Keane, K., Ogburn J., Orlowitz, J, Thomas MA., Tsao, J. (2016). Information Overload and Underload. Open Scholarship Initiative Proceedings, 1.Google Scholar
  8. Aljukhadar, M., Senecal, S., & Daoust, C. E. (2012). Using recommendation agents to cope with information overload. International Journal of Electronic Commerce, 17(2), 41-70.Google Scholar
  9. Allwein, G. (2004) A Qualitative Framework for Shannon Information Theories, In Proceedings Of The 2004 Workshop On New Security Paradigms, 23-31.Google Scholar
  10. Anderson, J. R. (2014). Rules of the mind. Psychology Press.Google Scholar
  11. Arora, S., & Ge, R. (2011, July). New algorithms for learning in presence of errors. In International Colloquium on Automata, Languages, and Programming (pp. 403-415). Springer Berlin Heidelberg.Google Scholar
  12. Asadi, M. (2015). “Information Theory” Research Trend: A Bibliometric Approach. SLIS Connecting, 4(1), 45.Google Scholar
  13. Ateniese, G., Mancini, L. V., Spognardi, A., Villani, A., Vitali, D., & Felici, G. (2015). Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers. International Journal of Security and Networks, 10(3), 137-150.Google Scholar
  14. Barnaghi, P., Sheth, A., Singh, V., & Hauswirth, M. (2015). Physical-Cyber-Social Computing: Looking Back, Looking Forward. Internet Computing, IEEE, 19(3), 7-11.Google Scholar
  15. Barwise, J. & Seligman, J. (1997) Information Flow: The Logic of Distributed Systems, Cambridge Tracts in Theoretical Computer Science 44.Google Scholar
  16. Basili, V. R., & Perricone, B. T. (1984). Software errors and complexity: an empirical investigation0. Communications of the ACM, 27(1), 42-52.Google Scholar
  17. Bolotin, A. (2015, January). Any realistic model of a physical system must be computationally realistic. In Journal of Physics: Conference Series (Vol. 574, No. 1, p. 012088). IOP Publishing.Google Scholar
  18. Bond, A. H., & Gasser, L. (Eds.). (2014). Readings In Distributed Artificial Intelligence. Morgan Kaufmann.Google Scholar
  19. Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. New York: Oxford University Press.Google Scholar
  20. Boyd, J. R. (1987). Organic design for command and control. A discourse on winning and losing. Google Scholar
  21. Buckland, M. K. (1991). Information as thing. Journal of the American Society of Information Science, 42(5), 351-360.Google Scholar
  22. Chang, E., & Bennamoun, M. (2012 June), Message from the Conference General Chairs. 5th International Conference on Human System Interactions (HSI) 2012Google Scholar
  23. Cilliers, P. (1998). Complexity and postmodernism: Understanding complex systems. London: Routledge.Google Scholar
  24. Clark, H. H., & Carlson, T. B. (1981). Context for comprehension. Attention and performance IX, 313-330.Google Scholar
  25. Craik, K. J. W. (1967). The nature of explanation (Vol. 445). CUP Archive.Google Scholar
  26. Davey, S., Gordon, N., Holland, I., Rutten, M., & Williams, J. (2015). Bayesian Methods in the Search for MH370. Defence Science and Technology Group.Google Scholar
  27. Dekker, S. (2014). The field guide to understanding 'human error'. Ashgate Publishing, Ltd.Google Scholar
  28. Dekker, S. (2016). Drift into failure: From hunting broken components to understanding complex systems. CRC Press.Google Scholar
  29. Dervin, B., & Reinhard, C. D. (2006). Researchers and practitioners talk about users and each other. Making user and audience studies matter paper. Information research, 12(1), 1.Google Scholar
  30. Devlin, K. (2001). Claude Shannon 1916–2001. Focus: The Newsletter of the Mathematical Association of America, 21, 20–21.Google Scholar
  31. Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous computing, 5(1), 4-7.Google Scholar
  32. Dobrev, D. (2005). Formal definition of artificial intelligence.Google Scholar
  33. Dourish, P. (2004). Where The Action Is: The Foundations Of Embodied Interaction. MIT press.Google Scholar
  34. Du, D. Z., & Pardalos, P. M. (Eds.). (2013). Handbook of combinatorial optimization: supplement (Vol. 1). Springer Science & Business Media.Google Scholar
  35. Ferdinand, A. E. (1974). A theory of system complexity. International Journal of General System 1(1), 19-33.Google Scholar
  36. Fidel, R. (2012). Human Information Interaction: An Ecological Approach To Information Behavior. MIT Press.Google Scholar
  37. Gershon, N (1995). Human Information Interaction, WWW4 Conference, December 1995.Google Scholar
  38. Gil, Y., Deelman, E., Blythe, J., Kesselman, C., & Tangmunarunkit, H. (2004). Artificial intelligence and grids: Workflow planning and beyond. IEEE Intelligent Systems, 19(1), 26-33.Google Scholar
  39. Goldberg, K. (2012). What is automation? IEEE Transactions on Automation Science and Engineering, 9(1), 1-2.Google Scholar
  40. Gunning, D. (2016). Program Information: Explainable Artificial Intelligence (XAI), Defense Advanced Research Projects Agency. Available at http://www.darpa.mil/attachments/XAIIndustryDay_Final.pptx Accessed January 10, 2017.
  41. Harkin, B., Webb, T. L., Chang, B. P., Prestwich, A., Conner, M., Kellar, I., Benn, Y., & Sheeran, P. (2015). Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence. Psychological Bulletin, 142(2), 198-229.Google Scholar
  42. Hempel, C. G. (1966). Philosophy of natural science.Google Scholar
  43. Hendler, J. A. (1996). Intelligent agents: Where AI meets information technology. IEEE Expert, 11(6), 20-23.Google Scholar
  44. Hendler, J., & Mulvehill, A. (2016). Social Machines: The Coming Collision of Artificial Intelligence, Social Networking, and Humanity. Apress.Google Scholar
  45. Henricksen, K., Indulska, J., & Rakotonirainy, A. (2002, August). Modeling context information in pervasive computing systems. In International Conference on Pervasive Computing (pp. 167-180). Springer Berlin Heidelberg.Google Scholar
  46. Humphreys, P. (2014). The chances of explanation: Causal explanation in the social, medical, and physical sciences. Princeton University Press.Google Scholar
  47. Jackson, T. W., & Farzaneh, P. (2012). Theory-based model of factors affecting information overload. International Journal of Information Management, 32(6), 523-532.Google Scholar
  48. Jones, Q., Ravid, G., & Rafaeli, S. (2004). Information overload and the message dynamics of online interaction spaces: A theoretical model and empirical exploration. Information systems research, 15(2), 194-210.Google Scholar
  49. Kerr, R., & Szelke, E. (Eds.). (2016). Artificial intelligence in reactive scheduling. Springer.Google Scholar
  50. Khoshgoftaar, T. M., & Munson, J. C. (1990). Predicting software development errors using software complexity metrics. IEEE Journal on Selected Areas in Communications, 8(2), 253-261.Google Scholar
  51. Kohn, L. T., Corrigan, J. M., & Donaldson, M. S. (2000). Why Do Errors Happen?Google Scholar
  52. Kulesza, T., Burnett, M., Wong, W.-K., & Stumpf, S. (2015). Principles of Explanatory Debugging to Personalize Interactive Machine Learning. IUI 2015, Proceedings of the 20th International Conference on Intelligent User Interfaces (pp. 126-137).Google Scholar
  53. Lamb, R., & Kling, R. (2003). Reconceptualizing users as social actors in information systems research. MIS Quarterly, 197-236.Google Scholar
  54. Laming, D. (2001a). Statistical information, uncertainty, and Bayes’ theorem: Some applications in experimental psychology. In S. Benferhat & P. Besnard (Eds.), Symbolic and Quantitative Approaches to Reasoning With Uncertainty (pp. 635– 646). Berlin: Springer-Verlag.Google Scholar
  55. Laming, D. (2001b). Statistical information, uncertainty, and Bayes’ theorem: Some applications in experimental psychology. In European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (pp. 635-646). Springer Berlin Heidelberg.Google Scholar
  56. Laming, D. (2010). Statistical information and uncertainty: A critique of applications in experimental psychology. Entropy, 12(4), 720-771.Google Scholar
  57. Limkar, S., & Jha, R. K. (2016). Technology Involved in Bridging Physical, Cyber, and Hyper World. In Proceedings of the Second International Conference on Computer and Communication Technologies (pp. 735-743). Springer India.Google Scholar
  58. Liu, K. (2000) Semiotics in Information Systems Engineering, Cambridge University Press, Cambridge.Google Scholar
  59. Lloyd, S. (2001). Measures of complexity: a nonexhaustive list. IEEE Control Systems Magazine, 21(4), 7-8.Google Scholar
  60. Lohani, M., Stokes, C., Dashan, N., McCoy, M., Bailey, C. A., & Rivers, S. E. (2016). A Framework for Human-Agent Social Systems: The Role of Non-Technical Factors in Operation Success. In Advances in Human Factors in Robots and Unmanned Systems (pp. 137-148). Springer International Publishing.Google Scholar
  61. Luce, R. D. (2003). Whatever happened to information theory in psychology? Review of general psychology, 7(2), 183.Google Scholar
  62. M. L. Minsky, editor. Semantic Information Processing. MIT Press 1968.Google Scholar
  63. Maes, P. (1994). Agents that reduce work and information overload. Communications of the ACM, 37(7), 30-40.Google Scholar
  64. Marchionini, G. (2008) Human–information interaction research and development, Library & Information Science Research, Volume 30, Issue 3, September 2008, Pages 165-174, ISSN 0740-8188Google Scholar
  65. Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9(6), 296-305.Google Scholar
  66. Marsland, S. (2015). Machine learning: an algorithmic perspective. CRC press.Google Scholar
  67. Marusich, L. R., Bakdash, J. Z., Onal, E., Michael, S. Y., Schaffer, J., O’Donovan, J., Gonzalez, C. (2016). Effects of Information Availability on Command-and-Control Decision Making Performance, Trust, and Situation Awareness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 58(2), 301-321.Google Scholar
  68. McGill, W. J. (1954). Multivariate information transmission. Psychometrika, 19, 97–116.Google Scholar
  69. McNutt, M. (2014). The hunt for MH370. Science, 344(6187), 947-947.Google Scholar
  70. Meseguer, J. (2014). Taming distributed system complexity through formal patterns. Science of Computer Programming, 83, 3-34.Google Scholar
  71. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.Google Scholar
  72. Mintzberg, H., Raisinghani, D., & Theoret, A. (1976). The structure of" unstructured" decision processes. Administrative science quarterly, 246-275.Google Scholar
  73. Mooney, R., & Ourston, D. (1989). Induction over the unexplained: Integrated learning of concepts with both explainable and conventional aspects. In Proceedings of the sixth international workshop on machine learning (pp. 5-7). Morgan Kaufmann Publishers Inc.Google Scholar
  74. Moore, M. G. (1989). Editorial: Three types of interaction.Google Scholar
  75. Moskowitz, I.S. & Kang, M.H. (1994) Covert Channels - Here to Stay? COMPASS’94, 235-243.Google Scholar
  76. Moskowitz, I.S., Chang, L.W. & Newman, R.E. (2002) Capacity is the Wrong Paradigm, NSPW’02, 114-126.Google Scholar
  77. Murayama, K., Blake, A. B., Kerr, T., & Castel, A. D. (2016). When enough is not enough: Information overload and metacognitive decisions to stop studying information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(6), 914.Google Scholar
  78. Mutch, A. (2002). Actors and networks or agents and structures: towards a realist view of information systems. Organization, 9(3), 477-496.Google Scholar
  79. Nilsson, N. J. (1969). A mobile automaton: An application of artificial intelligence techniques. SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CENTER.Google Scholar
  80. Nilsson, N. J. (2014). Principles Of Artificial Intelligence. Morgan Kaufmann.Google Scholar
  81. Norman, D. A. (1983). Design rules based on analyses of human error. Communications of the ACM, 26(4), 254-258.Google Scholar
  82. Omohundro, S. M. 2008. “The Basic AI Drives.” In Artificial General Intelligence 2008: Proceedings of the First AGI Conference, edited by Pei Wang, Ben Goertzel, and Stan Franklin, 483–492. Frontiers in Artificial Intelligence and Applications 171. Amsterdam: IOS.Google Scholar
  83. Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and Humans, 30(3), 286-297.Google Scholar
  84. Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6) 2297-2301.Google Scholar
  85. Primiero, G. (2014). A taxonomy of errors for information systems. Minds and Machines, 24(3), 249-273.Google Scholar
  86. Rabinovich, M. I., Simmons, A. N., & Varona, P. (2015). Dynamical bridge between brain and mind. Trends in cognitive sciences, 19(8), 453-461.Google Scholar
  87. Reason, J. (1990). Human error. Cambridge university press.Google Scholar
  88. Reason, J. (1994). Latent errors and systems disasters. In Social Issues In Computing (pp. 128-176). McGraw-Hill, Inc.Google Scholar
  89. Reason, J. (2000). Human error: models and management. BMJ, 320(7237), 768-770.Google Scholar
  90. Rich, C., & Waters, RC. (Eds.). (2014). Readings in artificial intelligence and software engineering. Morgan Kaufmann.Google Scholar
  91. Russell, S. & Norvig, P., (2003). Artificial Intelligence – A Modern Approach. New Jersey: Prentice-Hall, 9 (2) (2003)Google Scholar
  92. Saracevic, T. (2016). The Notion of Relevance in Information Science: Everybody knows what relevance is. But, what is it really? Synthesis Lectures on Information Concepts, Retrieval, and Services, 8(3), i-109.Google Scholar
  93. Schalkoff, R. J. (1992). Pattern recognition. John Wiley & Sons, Inc.Google Scholar
  94. Scheff, T. J. (1963). Decision rules, types of error, and their consequences in medical diagnosis. Systems Research and Behavioral Science, 8(2), 97-107.Google Scholar
  95. Sedig, K., & Parsons, P. (2015, March). Human–Information Interaction—A Special Issue of the Journal of Informatics. In Informatics (Vol. 2, No. 1, pp. 1-3). Multidisciplinary Digital Publishing Institute.Google Scholar
  96. Serruya, M. D. (2015). As we may think and be: brain-computer interfaces to expand the substrate of mind. Frontiers in systems neuroscience, 9.Google Scholar
  97. Shannon C. (1956). “The Bandwagon,” Institute of Radio Engineers, Transactions on Information Theory, March 1956; IT-2:3Google Scholar
  98. Shannon, C.E. (1948). “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423, 623–656, July–Oct. 1948.Google Scholar
  99. Sharma, A., Jagannathan, K., & Varshney, L. R. (2014, June). Information overload and human priority queuing. In 2014 IEEE International Symposium on Information Theory (pp. 831-835). IEEE.Google Scholar
  100. Shrobe, HE. (Ed.). (2014). Exploring artificial intelligence: survey talks from the National Conferences on Artificial Intelligence. Morgan Kaufmann.Google Scholar
  101. Simon, H. A. (1960). The new science of management decision.Google Scholar
  102. Simon, T., & Young, R.M. (1988). GOMS meets STRIPS: The integration of planning with skilled procedure execution in human–computer interaction. In People and Computers IV: Proceedings of the fourth conference of the British Computer Society Human–Computer Interaction Specialist Group, University of Manchester, 5–9 September 1988 (pp. 581–594). New York: Cambridge University Press.Google Scholar
  103. Singhvi A, Russell K. (2016). Inside the self-driving Tesla fatal accident, The New York Times. Available at www.nytimes.com/interactive/2016/07/01/business/inside-tesla-accident.html. Accessed December 2, 2016.
  104. Skilling, J. (1989). Maximum entropy and Bayesian methods. Cambridge England 1988. Dordrecht, the Netherlands: Kluwer.Google Scholar
  105. Soares, N., & Fallenstein, B. (2014). Aligning superintelligence with human interests: A technical research agenda. Machine Intelligence Research Institute (MIRI) technical report, 8.Google Scholar
  106. Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J. P., Riahi, M., Aberer, K., Jayaramen, P.P., Zaslavsky, A., Zarko, I.P., Skorin-Kapov, L. & Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In Interoperability and Open-Source Solutions for the Internet of Things (pp. 13-25). Springer International Publishing.Google Scholar
  107. Spier, S. (2016). From Culture Industry to Information Society: How Horkheimer and Adorno’s Conception of the Culture Industry Can Help Us Examine Information Overload in the Capitalist Information Society. In Information Cultures in the Digital Age (pp. 385-396). Springer Fachmedien Wiesbaden.Google Scholar
  108. Stonier, T. (2012). Beyond information: The natural history of intelligence. Springer Science & Business Media.Google Scholar
  109. Strong, A. I. (2016). Applications of Artificial Intelligence & Associated Technologies. Science [ETEBMS-2016], 5, 6.Google Scholar
  110. Toms, E. G. (2002). Information interaction: Providing a framework for information architecture. Journal of the American Society for Information Science and Technology, 53(10), 855-862.Google Scholar
  111. Toms, E.G. (1997). Browsing digital information: examining the “affordances” in the interaction of user and text. Unpublished Ph.D. Dissertation, University of Western Ontario.Google Scholar
  112. The Tesla Team. (2016). A Tragic Loss, Tesla Blog. Available at www.tesla.com/blog/tragic-loss. Accessed Jnauary 8, 2017.
  113. Vasant, P. (2015). Handbook of Research on Artificial Intelligence Techniques and Algorithms, 2 Volumes. Information Science Reference-Imprint of: IGI Publishing.Google Scholar
  114. Wah, BW. (1987). "Guest Editor's Introduction: New Computers for Artificial Intelligence Processing," in Computer, vol.20, no.1, pp.10-15, Jan. 1987Google Scholar
  115. Wiberg, M. (2015). Interaction, New Materials & Computing–Beyond the Disappearing Computer, Towards Material Interactions. Materials & Design. Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stephen Russell
    • 1
    Email author
  • Ira S. Moskowitz
    • 2
  • Adrienne Raglin
    • 1
  1. 1.U.S. Army Research LaboratoryAdelphiUSA
  2. 2.Naval Research LaboratoryWashington, DCUSA

Personalised recommendations