Skip to main content

Biomechanical Principles of Spine Stabilization

  • Chapter
  • First Online:
  • 1292 Accesses

Abstract

Understanding the fundamentals of spine biomechanics, both physiological and pathological, is imperative to making appropriate surgical decisions when attempting to stabilize the spine. In this chapter, the basic principles of various subjects, such as spinal anatomy, pathology, fusion, and constructs, are briefly reviewed. There is a specific focus on how these principles affect the thought process evoked when making surgical decisions and how certain techniques should be properly utilized to minimize poor outcomes. A poor understanding of how the spine would respond to each different intervention and treatment could ultimately lead to inadequate patient care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benzel EC. Biomechanics of spine stabilization. 3rd ed. New York: Thieme Medical Publishers; 2015.

    Google Scholar 

  2. Natarajan RN, Andersson GBJ. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiological loading. Spine. 1999;24:1873.

    Article  CAS  PubMed  Google Scholar 

  3. Granata KP, Marras WS, Davis KG. Variation in spinal load and trunk dynamics during repeated lifting exertions. Clin Biomech (Bristol, Avon). 1999;14:367.

    Article  CAS  Google Scholar 

  4. Cappozzo A. Compressive loads in the lumbar vertebral column during normal level walking. J Orthop Res. 1984;1:292.

    Article  CAS  PubMed  Google Scholar 

  5. White AA, Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: JB Lippincott; 1990. p. 30–342.

    Google Scholar 

  6. Board D, Stemper BD, Yoganandan N, Pintar FA, Shender B, Paskoff G. Biomechanics of the aging spine. Biomed Sci Instrum. 2006;42:1.

    PubMed  Google Scholar 

  7. Pintar FA, Yoganandan N, Voo L. Effect of age and loading rate on human cervical spine injury threshold. Spine. 1998;23:1957.

    Article  CAS  PubMed  Google Scholar 

  8. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res. 2001;19:977.

    Article  CAS  PubMed  Google Scholar 

  9. Ng HW, Teo EC, Zhang Q. Influence of cervical disc degeneration after posterior surgical techniques in combined flexion-extension—a nonlinear analytical study. J Biomech Eng. 2005;127:186.

    Article  PubMed  Google Scholar 

  10. McHenry MC, Easley KA, Locker GA. Vertebral osteomyelitis: long-term outcome for 253 patients from 7 Cleveland-area hospitals. Clin Infect Dis. 2002;34:1342–50.

    Article  PubMed  Google Scholar 

  11. Rawlings CE, Wilkins RH, Gallas HA, Goldner LJ, Francis R. Postoperative intervertebral disc space infection. Neurosurgery. 1983;13:371–6.

    Article  PubMed  Google Scholar 

  12. Friedman JA, Maher CO, Quast LM, McClelland RL, Ebersold MJ. Spontaneous disc space infections in adults. Surg Neurol. 2002;57:81–6.

    Article  PubMed  Google Scholar 

  13. Hadjipavlou AG, Mader JT, Necessary JT, Muffoletto AJ. Hematogenous pyogenic spinal infections and their surgical management. Spine. 2000;25:1668–79.

    Article  CAS  PubMed  Google Scholar 

  14. Whang PG, Wang JC. Bone graft substitutes for spinal fusion. J Spine. 2003;3:155–65.

    Article  Google Scholar 

  15. White AA, Panjabi MM, Thomas CL. The clinical biomechanics of kyphotic deformities. Clin Orthop Relat Res. 1977;128:8–17.

    Google Scholar 

  16. Mirvosky Y, Neuwirth MG. Comparison between the outer table and intracortical methods of obtaining autogenous bone graft from the iliac crest. Spine. 2000;25:1722–5.

    Article  Google Scholar 

  17. Haher TR, O’Brien M, Dryer J, Nucci R, Zipnick R, Leone DJ. The role of the lumbar facet joints in spinal stability: identification of alternative paths of loading. Spine. 1994;19:2667–70.

    Article  CAS  PubMed  Google Scholar 

  18. Huang RC, Wright TM, Panjabi MM, Lipman JD. Biomechanics of nonfusion implants. Orthop Clin N Am. 2005;36:271–80.

    Article  Google Scholar 

  19. Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine. 2001;26:E122–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Benzel MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chan, A.Y., Mullin, J.P., Bennett, E., Swartz, K., Benzel, E.C. (2017). Biomechanical Principles of Spine Stabilization. In: Holly, L., Anderson, P. (eds) Essentials of Spinal Stabilization . Springer, Cham. https://doi.org/10.1007/978-3-319-59713-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59713-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59712-6

  • Online ISBN: 978-3-319-59713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics