Skip to main content

Chemical Composition of Honey

  • Chapter
  • First Online:
Bee Products - Chemical and Biological Properties

Abstract

Honey is one of the most popular natural sweet substances. From a chemical point of view, it could be defined as a natural food mainly composed of sugars and water together with minor constituent such as minerals, vitamins, amino acids, organic acids, flavonoids and other phenolic compounds and aromatic substances. Its composition is particularly variable, depending on its botanical and geographical origins. The aim of this chapter is to describe the principal families of compounds present in honey and the analytical methods employed for their analysis, as well as to review the utility of those chemical components to discriminate honeys according to their origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Tarboush HM, Al-Kahtani HA, El-Sarrage M (1993) Floral-type identification and quality evaluation of some honey types. Food Chem 46:13–17

    Article  CAS  Google Scholar 

  • Agila A, Barringer S (2012) Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral American honeys. J Food Sci 77:C1103–C1108

    Article  CAS  PubMed  Google Scholar 

  • de Alda-Garcilope C, Gallego-Picó A, Bravo-Yagüe J, Garcinuño-Martínez R, Fernández-Hernando P (2012) Characterization of Spanish honeys with protected designation of origin “Miel de Granada” according to their mineral content. Food Chem 135:1785–1788

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Torre SR, Cavia MM, Fernández-Muiño MA, Moreno G, Huidobro JF, Sancho MT (2006) Evolution of acid phosphatase activity of honeys from different climates. Food Chem 97:750–755

    Google Scholar 

  • Alissandrakis E, Tarantilis PA, Harizanis PC, Polissiou M (2005) Evaluation of four isolation techniques for honey aroma compounds. J Sci Food Agric 85:91–97

    Article  CAS  Google Scholar 

  • Alissandrakis E, Tarantilis PA, Harizanis PC, Polissiou M (2007) Comparison of the volatile composition in thyme honeys from several origins in Greece. J Agric Food Chem 55:8152–8157

    Google Scholar 

  • Alqarni AS, Owayss AA, Mahmoud AA, Hannan MH (2014) Mineral content and physical properties of local and imported honeys in Saudi Arabia. J Saudi Chem Soc 18:618–625

    Article  CAS  Google Scholar 

  • Alvarez-Suarez JM, Tulipani S, Romandini S, Vidal A, Battino M (2009) Methodological aspects about determination of phenolic compounds and in vitro evaluation of antioxidant capacity in the honey: a review. Curr Anal Chem 5:293–302

    Article  CAS  Google Scholar 

  • Alvarez-Suarez JM, González-Paramás AM, Santos-Buelga C, Battino M (2010a) Antioxidant characterization of native monofloral Cuban honeys. J Agric Food Chem 58:9817–9824

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M (2010b) Contribution of honey in nutrition and human health: a review. Mediterr J Nutr Metab 3:15–23

    Article  Google Scholar 

  • Alvarez-Suarez JM, Giampieri F, Damiani E, Astolfi P, Fattorini D, Regoli F, Quiles JL, Battino M (2012) Radical-scavenging activity, protective effect against lipid peroxidation and mineral contents of monofloral Cuban honeys. Plant Foods Hum Nutr 67:31–38

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Suarez JM, Giampieri F, Cordero M, Gasparrini M, Forbes-Hernández TY, Mazzoni L, Afrin S, Beltrán-Ayala P, González-Paramás AM, Santos-Buelga C, Varela-Lopez A, Quiles JL, Battino M (2016) Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitocondrial function promoting wound healing. J Funct Foods 25:38–49

    Article  CAS  Google Scholar 

  • Alves-Moreira RF, Bastos-de Maria CA (2001) Glicídios no mel. Quim Nova 24:516–525

    Article  Google Scholar 

  • Ampuero S, Bodganov S, Bosset JO (2004) Classification of unifloral honeys with an MS-based electronic nose using different sampling modes SHS SPME and INDEX. Eur Food Res Technol 218:194–207

    Article  CAS  Google Scholar 

  • Andrade P, Ferreres F, Amaral MT (1997) Analysis of honey phenolic acids by HPLC, its application to honey botanical characterization. J Liq Chromatogr Relat Technol 20:2281–2288

    Article  CAS  Google Scholar 

  • Anjos O, Campos MG, Contreras-Ruiz P, Antunes P (2015) Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem 169:218–223

    Article  CAS  PubMed  Google Scholar 

  • Anklam E (1998) A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem 63:549–562

    Article  CAS  Google Scholar 

  • Arráez-Román D, Gómez-Caravaca AM, Gómez-Romero M, Segura-Carretero A, Fernández-Gutiérrez A (2006) Identification of phenolic compounds in rosemary honey using solid-phase extraction by capillary electrophoresis-electrospray ionization-mass spectrometry. J Pharm Biomed Anal 41:1648–1656

    Article  PubMed  CAS  Google Scholar 

  • Atanassova J, Yurukova L, Lazarova M (2012) Pollen and inorganic characteristics of Bulgarian unifloral honeys. Czech J Food Sci 30:520–526

    Google Scholar 

  • Azeredo LC, Azeredo MAA, de Souza SR, Dutra VML (2003) Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chem 80:249–254

    Article  CAS  Google Scholar 

  • Babacan S, Rand AG (2005) Purification of amylase from honey. J Food Sci 70:C413–C418

    Article  CAS  Google Scholar 

  • Badjah Hadj Ahmed AY, Obbed MS, Wabaidur SM, Al Othman ZA, Al-Shaalan NH (2014) High-performance liquid chromatography analysis of phenolic acid, flavonoid, and phenol contents in various natural Yemeni honeys using multi-walled carbon nanotubes as a solid-phase extraction adsorbent. J Agric Food Chem 62:5443–5450

    Article  CAS  PubMed  Google Scholar 

  • Baker HG, Baker I (1986) The occurrence and significance of amino acids in floral nectar. Plant Syst Evol 151:175–186

    Article  CAS  Google Scholar 

  • Ball DW (2007) The chemical composition of honey. J Chem Educ 84:1643–1646

    Article  CAS  Google Scholar 

  • Baroni MV, Chiabrando GA, Costa C, Wunderlin DA (2002) Assessment of the floral origin of honey by SDS-page immunoblot techniques. J Agric Food Chem 50:1362–1367

    Article  CAS  PubMed  Google Scholar 

  • Baroni MV, Arrua C, Nores ML, Faye P, Diaz MP, Chiabrando GA, Wunderlin DA (2009) Composition of honey from Cordoba (Argentina). Assessment of North/South provenance by chemometrics. Food Chem 114:727–733

    Article  CAS  Google Scholar 

  • Barra MPG, Ponce-Díaz MC, Venegas-Gallegos C (2010) Volatile compounds in honey produced in the central valley of Ñuble province, Chile. Chilean J Agric Res 70:75–84

    Google Scholar 

  • Batista B, Da Silva L, Rocha B, Rodrigues J, Berretta-Silva A, Bonates T, Gomes V, Barbosa R, Barbosa F (2012) Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Res Int 49:209–215

    Article  CAS  Google Scholar 

  • Battaglini MB, Bossi G (1972) Determination of glucides by GLC and its possibilities for honey qualification. Apiacta 1:12–13

    Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Sugars, sugar alcohols and honey In: Food chemistry, vol 2009, 4th edn.; Springer: Berlin, pp 883−890.

    Google Scholar 

  • Bentabol-Manzanares A, Hernández-García Z, Rodríguez-Galdón B, Rodríguez-Rodríguez E, Díaz-Romero C (2011) Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chem 126:664–672

    Article  CAS  Google Scholar 

  • Bernal JL, Nozal MJ, Toribio L, Diego JC, Ruiz A (2005) A comparative study of several HPLC methods for determining free amino acid profiles in honey. J Sep Sci 28:1039–1047

    Google Scholar 

  • Bianchi F, Mangia A, Mattarozzi M, Musci M (2011) Characterization of the volatile profile of thistle honey using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Food Chem 129:1030–1036

    Article  CAS  Google Scholar 

  • Biesaga M, Pyrzyńska K (2013) Stability of bioactive polyphenols from honey during different extraction methods. Food Chem 136:46–54

    Article  CAS  PubMed  Google Scholar 

  • Bilikova EK, Simuth J (2010) New criterion for evaluation of honey: quantification of royal jelly protein Apalbumin 1 in honey. J Agric Food Chem 58:8776–8781

    Article  CAS  PubMed  Google Scholar 

  • Boffo EF, Tavares LA, Tobias ACT, Ferreira MMC, Ferreira AG (2012) Identification of components of Brazilian honey by 1H NMR and classification of its botanical origin by chemometric methods. LWT Food Sci Technol 49:55e63

    Article  CAS  Google Scholar 

  • Bogdanov S, Baumann E (1988) Determination of sugar composition of honeys by HPLC. Mitt Geb Lebensm Hyg 79:198–206

    CAS  Google Scholar 

  • Bogdanov S, Lüllmann C, Martin P, Von der Ohe W, Russmann H, Vorwohl G et al (1999) Honey quality and international regulatory standards: review by the International Honey Commission. Bee World 80:61e69

    Article  Google Scholar 

  • Bogdanov S, Haldimann M, Luginbuhl W, Gallmann P (2007) Minerals in honey: environmental, geographical and botanical aspects. J Apic Res 46:269–275

    Article  CAS  Google Scholar 

  • Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Am Coll Nutr 27:677–689

    Article  CAS  PubMed  Google Scholar 

  • Bonaga G, Giumanini AG, Gliozzi G (1986) Chemical composition of chestnut honey: analysis of the hydrocarbon fraction. J Agric Food Chem 34:319–326

    Article  CAS  Google Scholar 

  • Bouseta A, Collin S (1995) Optimized Likens-Nickerson methodology for quantifying honey flavors. J Agric Food Chem 43:1890–1897

    Article  CAS  Google Scholar 

  • Bouseta A, Scheirman V, Collin S (1996) Flavor and free amino acid composition of lavender and eucalyptus honeys. J Food Sci 61:683–694

    Article  CAS  Google Scholar 

  • Bradbear N (2009) Definition and uses of honey. In: Bees and their role in forest livelihoods. FAO, Rome, pp 81–88. http://www.fao.org/3/a-i0842e.pdf Accessed Oct 2016

    Google Scholar 

  • Brokl M, Soria AC, Ruiz-Matute AI, Sanz ML, Ramos L (2010) Separation of disaccharides by comprehensive two-dimensional gas chromatography−time-of-flight mass spectrometry. Application to honey analysis. J Agric Food Chem 58:11561–11567

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski K, Sjaarda C, Maldonado-Alvarez L (2013) A new look on protein–polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins? PLoS One 8:1–9

    Article  CAS  Google Scholar 

  • Cabras P, Angioni A, Tuberoso C, Floris I, Reniero F, Guillou C, Ghelli S (1999) Homogentisic acid: a phenolic acid as a marker of strawberry-tree (Arbutus unedo) honey. J Agric Food Chem 47(10):4064–4067

    Article  CAS  PubMed  Google Scholar 

  • Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2015) Dispersive liquid-liquid microextraction for the determination of flavonoid aglycone compounds in honey using liquid chromatography with diode array detection and time-of-flight mass spectrometry. Talanta 131:185–191

    Article  CAS  PubMed  Google Scholar 

  • Campone L, Piccinelli AL, Pagano I, Carabetta S, Di Sanzo R, Russo M, Rastrelli L (2014) Determination of phenolic compounds in honey using dispersive liquid-liquid microextraction. J Chrom A 1334:9–15

    Article  CAS  Google Scholar 

  • Campos G, Nappi U, Raslan D, Augusti R (2000) Substâncias voláteis em mel floral e mel de melato. Cienc Tecnol Aliment 20:18–22

    Article  CAS  Google Scholar 

  • Castro-Várquez L, Pérez-Coello MS, Cabezudo MD (2003) Analysis of volatile compounds of Rosemary honey. Comparison of different extraction techniques. Chromatographia 57:227–233

    Article  Google Scholar 

  • Castro-Vázquez L, Díaz-Maroto MC, Pérez-Coello MS (2006) Volatile composition and contribution to the aroma of Spanish honeydew honeys. Identification of a new chemical marker. J Agric Food Chem 54:4809–4813

    Article  PubMed  CAS  Google Scholar 

  • Castro-Vázquez L, Díaz-Maroto MC, Pérez-Coello MS (2007) Aroma composition and new chemical markers of Spanish citrus honeys. Food Chem 103:601–606

    Article  CAS  Google Scholar 

  • Castro-Vázquez L, Díaz-Maroto MC, González-Viñas MA, de la Fuente E, Pérez-Coello MS (2008) Influence of storage conditions on chemical composition and sensory properties of citrus honey. J Agric Food Chem 56:1999–2006

    Article  PubMed  CAS  Google Scholar 

  • Castro-Vázquez L, Díaz-Maroto MC, González-Viñas MA, Pérez-Coello MS (2009) Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem 112:1022–1030

    Article  CAS  Google Scholar 

  • Castro-Vázquez L, DÍaz-Maroto MC, de Torres C, Pérez-Coello MS (2010) Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Res Int 43:2335–2340

    Article  CAS  Google Scholar 

  • Cavia MM, Fernández-Muino MA, Alonso-Torre SR, Huidobro JF, Sancho MT (2007) Evolution of acidity of honeys from continental climates: influence of induced granulation. Food Chem 100:1728–1733

    Article  CAS  Google Scholar 

  • Chen H, Fan C, Chang Q, Pang G, Hu X, Lu M (2014) Chemometric determination of the botanical origin for Chinese honeys on the basis of mineral elements determined by ICP-MS. J Agric Food Chem 62:2443–2448

    Article  CAS  PubMed  Google Scholar 

  • Cherchi A, Spanedda L, Tuberoso C, Cabras P (1994) Solid-phase extraction and high-performance liquid chromatographic determination of organic acids in honey. J Chromatogr A 669:59–64

    Article  CAS  Google Scholar 

  • Chiba S (1998) α-Glucosidase. In: The Amylase Research Society of Japan (ed) Handbook of amylases and related enzymes. Pergamon Press, Oxford, pp 104–116

    Google Scholar 

  • Chua LS, Abdul-Rahaman NL, Sarmidi MR, Aziz R (2012) Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chem 135:880–887

    Article  CAS  PubMed  Google Scholar 

  • Chua LS, Lee JY, Chan GF (2013) Honey protein extraction and determination by mass spectrometry. Anal Bioanal Chem 405:3063–3074

    Article  CAS  PubMed  Google Scholar 

  • Chua LS, Lee JY, Chan GF (2015) Characterization of the proteins in honey. Anal Lett 48:697–709

    Article  CAS  Google Scholar 

  • Chudzinska M, Baralkiewicz D (2010) Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. Food Chem Toxicol 48:284–290

    Google Scholar 

  • Chudzinska M, Baralkiewicz D (2011) Application of ICP-MS method of determination of 15 in honey with chemometric approach for the verification of their authenticity. Food Chem Toxicol 49:2741–2749

    Article  CAS  PubMed  Google Scholar 

  • Ciappini MC, Stoppani FS (2014) Determination of antioxidant capacity, flavonoids, and total phenolic content in eucalyptus and clover honeys. J Apic Sci 58:103–111

    CAS  Google Scholar 

  • Cimpoiu C, Hosu A, Miclaus V, Puscas A (2013) Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochim Acta A Mol Biomol Spectrosc 100:149–154

    Article  CAS  PubMed  Google Scholar 

  • Ciulu M, Solinas S, Floris I, Panzanellia A, Pilo MI, Piu PC, Spanoa N, Sanna G (2011) RPHPLC determination of water-soluble vitamins in honey. Talanta 83:924–929

    Article  CAS  PubMed  Google Scholar 

  • Ciulu M, Spano N, Pilo MI, Sanna G (2016) Recent advances in the analysis of phenolic compounds in unifloral honeys. Molecules 21:451–482

    Article  PubMed  CAS  Google Scholar 

  • Codex Alimentarius (2001) Revised codex standard for honey, Codex Stan 12-1981 Rev.2

    Google Scholar 

  • Cometto PM, Faye PF, di Paola RD, Rubio MA, Aldao MAJ (2003) Comparison of free amino acids profile in honey from three Argentinian regions. J Agric Food Chem 51:5079–5087

    Article  CAS  PubMed  Google Scholar 

  • Consonni R, Cagliani LR (2015) Recent developments in honey characterization. RSC Adv 5(5):59696–59714

    Article  CAS  Google Scholar 

  • Consonni R, Cagliani LR, Cogliati C (2012) NMR characterization of saccharides in Italian honeys of different floral sources. J Agric Food Chem 60:4526–4534

    Article  CAS  PubMed  Google Scholar 

  • Consonni R, Cagliani LR, Cogliati C (2013) Geographical discrimination of honeys by saccharides analysis. Food Control 32:543e548

    Article  CAS  Google Scholar 

  • Conte LS, Miorini M, Giomo A, Bertacco G, Zironi R (1998) Evaluation of some fixed components for unifloral honey characterization. J Agric Food Chem 46:1844–1849

    Article  CAS  Google Scholar 

  • Cotte JF, Casabianca H, Chardon S, Lheritier J, Grenier-Loustalot MF (2003) Application of carbohydrate analysis to verify honey authenticity. J Chromatogr A 1021:145–155

    Article  CAS  PubMed  Google Scholar 

  • Cotte JF, Casabianca H, Chardon S, Lheritier J, Grenier-Loustalot MF (2004a) Chromatographic analysis of sugars applied to the characterisation of monofloral honey. Anal Bioanal Chem 380:698–705

    Article  CAS  PubMed  Google Scholar 

  • Cotte JF, Casabianca H, Giroud B, Albert M, Lheritier J, Grenier-Loustalot MF (2004b) Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Anal Bioanal Chem 378:1342–1350

    Article  CAS  PubMed  Google Scholar 

  • Crane E (1990) The traditional hive products: honey and beeswax. In: Crane E (ed) Bees and beekeeping: science, practice and world resources. Heinemann Newnes, Oxford, pp 388–413

    Google Scholar 

  • Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch LF (2007) A review of volatile analytical methods for determining the botanical origin of honey. Food Chem 103:1032–1043

    Article  CAS  Google Scholar 

  • Daniele G, Maitre D, Casabianca H (2012) Identification, quantification and carbon stable isotopes determinations of organics acids in monofloral honeys. A powerful tool for botanical and authenticity control. Rapid Commun Mass Spectrom 26:1993–1998

    Article  CAS  PubMed  Google Scholar 

  • Davies AMC (1975) Amino acid analysis of honeys from eleven countries. J Apic Res 14:29–39

    Article  CAS  Google Scholar 

  • Davies AMC (1976) The application of amino acid analysis to the determination of the geographical origin of honey. J Food Technol 11:515–523

    Article  CAS  Google Scholar 

  • Di Girolamo F, D’Amato A, Righetti PG (2012) Assessment of the floral origin of honey via proteomic tools. J Proteomics 75:3688–3693

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova B, Gevrenova R, Anklam E (2007) Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography. Phytochem Anal 18:24–32

    Article  CAS  PubMed  Google Scholar 

  • Dobre I, Georgescu LA, Alexe P, Escuredo O, Seijo MC (2012) Rheological behavior of different honey types from Romania. Food Res Int 49:126–132

    Article  CAS  Google Scholar 

  • Doner LW (1977) The sugars of honey—a review. J Sci Food Agric 28:443–456

    Article  CAS  PubMed  Google Scholar 

  • Dustman JH (1971) Über die katalaseaktivität in bienenhonig ausder tracht der heidekrautgewächse (Ericaceae). Z Lebensm Unters Forsch 145:292–295

    Article  Google Scholar 

  • Escriche I, Kadar M, Juan-Borrás M, Domenech E (2011) Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Res Int 44:1504–1513

    Article  CAS  Google Scholar 

  • Escriche I, Kadar M, Juan-Borrás M, Domenech E (2014) Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem 142:135–143

    Article  CAS  PubMed  Google Scholar 

  • Escuredo O, Míguez M, Fernández-González M, Seijo MC (2013) Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138:851–856

    Article  CAS  PubMed  Google Scholar 

  • Escuredo O, Dobre I, Fernández-González M, Seijo MC (2014) Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149:84–90

    Article  CAS  PubMed  Google Scholar 

  • EU Council (2002) Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of European Community L10:47–52

    Google Scholar 

  • Faostat (2016). http://fenix.fao.org/faostat/beta/es/?#data. Accessed Sept 2016.

  • Feller-Demalsy MJ, Vincent B, Beaulieu F (1989) Teneur en minéraux et origine géographique des miels du Canada. Apidology 20:77–91

    Article  CAS  Google Scholar 

  • Fernandez-Torres R, Perez-Bernal JL, Bello-Lopez MA, Callejon-Mochon M, Jimenez-Sanchez JC, Guiraum-Perez A (2005) Mineral content and botanical origin of Spanish honeys. Talanta 65:686–691

    Article  CAS  PubMed  Google Scholar 

  • Ferreres F, García-Viguera C, Tomás-Lorente F, Tomás-Barberán FA (1993) Hesperetin: a marker of the floral origin of citrus honey. J Sci Food Agric 61:121–123

    Article  CAS  Google Scholar 

  • Ferreres F, Tomás-Barberán FA, Soler C, García-Viguera C, Ortiz A, Tomás-Lorente F (1994a) A simple extractive technique for honey flavonoid HPLC analysis. Apidologie 25:21–30

    Article  CAS  Google Scholar 

  • Ferreres F, Andrade P, Tomás-Barberán FA (1994b) Flavonoids from Portuguese heather honey. Z Lebensm Unters Forsch 199:32–37

    Google Scholar 

  • Ferreres F, Andrade P, Tomás-Barberán FA (1996) Natural occurrence of abscisic acid in heather honey and floral nectar. J Agric Food Chem 44:2053–2056

    Article  CAS  Google Scholar 

  • Flanjak I, Strelec I, Kenjerić D, Primorac L (2016) Croatian produced unifloral honeys characterised according to the protein and proline content and enzyme activities. J Apic Sci 60:39–48

    CAS  Google Scholar 

  • Földházi G (1994) Analysis and quantitation of sugars in honey of different botanical origin using high performance liquid chromatography. Acta Alim 23:229–311

    Google Scholar 

  • Frazzoli C, D’Ilio B, Bocca B (2007) Determination of Cd and Pb in honey by SF–ICP-MS: validation figures and uncertainty of results. Anal Lett 40:1992–2004

    Article  CAS  Google Scholar 

  • de la Fuente E, Martínez-Castro I, Sanz J (2005) Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography-mass spectrometry. J Sep Sci 28:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente E, Ruiz-Matute AI, Valencia-Barrera RM, Sanz J, Martínez-Castro I (2011) Carbohydrate composition of Spanish unifloral honeys. Food Chem 129:1483–1489

    Article  CAS  Google Scholar 

  • Gambacorta E, Simonetti A, Garrisi N, Intaglietta I, Perna A (2014) Antioxidant properties and phenolic content of sulla (Hedysarum spp.) honeys from Southern Italy. Int J Food Sci Technol 49:2260–2268

    Article  CAS  Google Scholar 

  • Gilbert J, Shephard MJ, Wallwork MA, Harris RG (1981) Determination of the geographical origin of honeys by multivariate analysis of gas chromatographic data on their free amino acid content. J Apic Res 20:125–135

    Article  CAS  Google Scholar 

  • Giri KV (1938) The chemical composition and enzyme content of indian honey. Madras Agric J 26:68–72

    CAS  Google Scholar 

  • Godefroot M, Sandra P, Verzele M (1981) New method for quantitative essential oil analysis. J Chromatogr 203:325–335

    Article  CAS  Google Scholar 

  • Goldschmidt S, Burkert H (1955) Observation of some heretofore unknown sugars in honey. Z Physiol Chem 300:188–200

    Google Scholar 

  • Gómez Bárez JA, Garcia-Villanova RJ, Elvira Garcia S, Rivas Palá T, González Paramás AM, Sánchez Sánchez J (2000) Geographical discrimination of honeys through the employment of sugar patterns and common chemical quality parameters. Eur Food Res Technol 210:437–444

    Article  Google Scholar 

  • Gómez-Bárez JA, García-Villanova RJ, Elvira-García S, González-Paramás AM (1999) Optimization of the capillary gas chromatographic analysis of mono- and oligosaccharides in honeys. Chromatographia 50:461–469

    Article  Google Scholar 

  • González-Miret ML, Terrab A, Hernanz D, Fernández-Recamales MA, Heredia FJ (2005) Multivariate correlation between color and mineral composition of honeys and by their botanical origin. J Agric Food Chem 53:2574–2580

    Article  PubMed  CAS  Google Scholar 

  • González-Paramás AM, Gómez-Bárez JA, García-Villanova RJ, Rivas Palá T, Ardanuy Albajar R, Sánchez J (2000) Geographical discrimination of honeys by using mineral composition and common chemical quality parameters. J Sci Food Agric 80:157–165

    Article  Google Scholar 

  • González-Paramás AM, Gómez-Bárez JA, Cordón-Marcos C, García-Villanova RJ, Sánchez-Sánchez J (2006) HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chem 95:148–156

    Article  CAS  Google Scholar 

  • Habib HM, Al Meqbali FT, Kamal H, Souka UD, Ibrahim WH (2014) Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food Chem 153:28–34

    Article  CAS  PubMed  Google Scholar 

  • Hermosín I, Chicón RM, Cabezudo MD (2003) Free amino acid composition and botanical origin of honey. Food Chem 83:263–268

    Article  CAS  Google Scholar 

  • Hernández OM, Fraga JMG, Jiménez AI, Jiménez F, Arias JJ (2005) Characterization of honey from the Canary Islands: determination of the mineral content by atomic absorption spectrophotometry. Food Chem 93:449–458

    Article  CAS  Google Scholar 

  • Hogenboom AC, van Leerdam JA, de Voogt P (2009) Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography–hybrid linear ion trap Orbitrap mass spectrometry. J Chromatogr A 1216:510–519

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MT, de Lorenzo C, Polo MC, Martín-Álvarez PJ, Pueyo E (2004) Usefulness of amino acid composition to discrimínate between honeydew and floral honeys. Application to honeys from a small geographic area. J Agric Food Chem 52:84–89

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MT, Martín-álvarez PJ, Polo MC, de Lorenzo C, González M, Pueyo E (2006) Changes in the free amino acid contents of honeys during storage at ambient temperature. J Agric Food Chem 54:9099–9104

    Article  CAS  PubMed  Google Scholar 

  • Janiszewska K, Aniołowska M, Nowakowski P (2012) Free amino acids content of honeys from Poland. Pol J Food Nutr Sci 62:85–89

    CAS  Google Scholar 

  • Jànoškovà N, Vyviurska O, Špànik I (2014) Identification of volatile organic compounds in honeydew honeys using comprehensive gas chromatography. J Food Nutr Res 53:353–362

    Google Scholar 

  • Jerković I, Marijanović Z, Staver MM (2011a) Screening of natural organic volatiles from Prunus mahaleb L. honey: coumarin and vomifoliol as nonspecific biomarkers. Molecules 16:2507–2518

    Article  PubMed  CAS  Google Scholar 

  • Jerković I, Tuberoso CIG, Kasum A, Marijanović Z (2011b) Volatile compounds of Asphodelus microcarpus Salzm. et Viv. honey obtained by HS-SPME and USE analyzed by GC/MS. Chem Biodivers 8:587–598

    Article  PubMed  CAS  Google Scholar 

  • Kadri SM, Zaluski R, de Oliveira Orsi R (2017) Nutritional and mineral contents of honey extracted by centrifugation and pressed processes. Food Chem 218:237–241

    Article  CAS  PubMed  Google Scholar 

  • Karabagias IK, Vavoura MV, Badeka A, Kontakos S, Kontominas MG (2014) Differentiation of greek thyme honeys according to geographical origin based on the combination of phenolic compounds and conventional quality parameters using chemometrics. Food Anal Methods 7:2113–2121

    Article  Google Scholar 

  • Kaškonienė V, Venskutonis PR (2010) Floral markers in honey of various botanical and geographic origins: a review. Compr Rev Food Sci Food Saf 9:620–634

    Article  CAS  Google Scholar 

  • Kaškonienė V, Venskutonis PR, Čeksteytė V (2010) Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. LWT Food Sci Technol 43:801–807

    Article  CAS  Google Scholar 

  • Kečkeš S, Gašić U, Veličković TĆ, Milojković-Opsenica D, Natić M, Tešic Z (2013) The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem 138:32–40

    Article  PubMed  CAS  Google Scholar 

  • Kenjerić D, Primorac LJ, Mandić ML, Bubalo D, Perl Pirički A, Flanjak I (2006) Dalmatian sage (Salvia officinalis L.) honey characterisation. Dtsch Lebensmitt Rundsch 102:479–484

    Google Scholar 

  • Kenjeric D, Mandic ML, Primorac L, Cacic F (2008) Flavonoid pattern of sage (Salvia officinalis L.) unifloral honey. Food Chem 110:187–192

    Article  CAS  PubMed  Google Scholar 

  • Kešckeš J, Trifković J, Andrić F, Jovetić M, Tešić Ž, Milojković-Opsenica D (2013) Amino acids profile of Serbian unifloral honeys. J Sci Food Agric 93:3368–3376

    Article  CAS  Google Scholar 

  • Krell R (1996) Value-added products from beekeeping. In: FAO agricultural services bulletin no. 124. http://www.fao.org/3/a-w0076e/index.html. Accessed Sept 2016

  • Kropf U, Jamnik M, Bertoncelj J, Golob T (2008) Linear regression model of the ash mass fraction and electrical conductivity for Slovenian honey. Food Technol Biotechnol 46:335–340

    CAS  Google Scholar 

  • Kurtagić H, Barudanović S, Durmić V (2015) Determination of rutin, quercetin, naringenin and hesperetin in the honey from Bosnia and Herzegovina (B & H) in relation to the composition of pollen. J Environ Sci Eng A 4:615–622

    Google Scholar 

  • Lammertyn J, Veraverbeke EA, Irudayaraj J (2004) zNose technology for the classification of honey based on rapid aroma profiling. Sens Actuators 98:54–62

    Article  CAS  Google Scholar 

  • Lee DC, Lee SY, Cha SH, Choi YS, Rhee HI (1998) Discrimination of native bee-honey and foreign bee-honey by SDS–PAGE. Korean J Food Sci 30:1–5

    Google Scholar 

  • Lenhardt L, Bro R, Zeković I, Dramićanin T, Dramićanin MD (2015) Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chem 75:284–291

    Article  CAS  Google Scholar 

  • León-Ruiz V, Vera S, González-Porto AV, San Andrés MP (2011) Vitamin C and sugar levels as simple markers for discriminating Spanish honey sources. J Food Sci 76:C356–C361

    Article  PubMed  CAS  Google Scholar 

  • León-Ruiz V, Vera S, González-Porto AV, Andrés MPS (2013) Analysis of water-soluble vitamins in honey by isocratic RP-HPLC. Food Anal Methods 6:488–496

    Article  Google Scholar 

  • Likens ST, Nickerson GB (1964) Detection of certain hop oil constituents in brewing products. American Society of Brewing Chemists Proceedings, pp 5–13

    Google Scholar 

  • Liu H, Zhang M, Guo Y, Qiu H (2016) Solid-phase extraction of flavonoids in honey samples using carbamate-embedded triacontyl-modified silica sorbent. Food Chem 204:56–61

    Article  CAS  PubMed  Google Scholar 

  • Low NH, Sporns P (1988) Analysis and quantitation of minor di- and trisaccharides in honey, using capillary gas chromatography. J Food Sci 53:558–561

    Article  CAS  Google Scholar 

  • Lušić D, Koprivnjak O, Curić D, Sabatini AG, Conte LS (2007) Volatile profile of Croatian lime tree (Tilia sp.), fir honeydew (Abies alba) and sage (Salvia officinalis) honey. Food Technol Biotechnol 45:156–165

    Google Scholar 

  • Maignial L, Pibrot P, Bonetti G, Chaintrau A, Marion JP (1992) Simultaneous distillation-extraction under static vacuum: isolation of volatile compounds at room temperature. J Chromatogr 606:87–94

    Article  CAS  Google Scholar 

  • Mannas D, Altug T (2007) SPME/GC/MS and sensory flavour profile analysis for estimation of authenticity of thyme honey. Int J Food Sci Technol 42:133–138

    Article  CAS  Google Scholar 

  • Mannina L, Sobolev AP, di Lorenzo A, Vista S, Tenore GC, Daglia M (2015) Chemical composition of different botanical origin honeys produced by Sicilian black honeybees (Apis mellifera ssp. sicula). J Agric Food Chem 63:5864–5874

    Article  CAS  PubMed  Google Scholar 

  • Manyi-Loh CE, Clarke AM, Munzhelele T, Green E, Mkwetshana NF, Ndip RN (2010) Selected South African honeys and their extracts possess in vitro anti-Helicobacter pylori activity. Arch Med Res 41:324–331

    Google Scholar 

  • Manyi-Loh CE, Clarke AM, Ndip RN (2011a) Identification of volatile compounds in solvent extracts of honeys produced in South Africa. Afr J Agric Res 6:4327–4334

    Google Scholar 

  • Manyi-Loh C, Ndip RN, Clarke AM (2011b) Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int J Mol Sci 12:9514–9532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall T, Williams KM (1987) Electrophoresis of honey: characterization of trace proteins from a complex biological matrix by silver staining. Anal Biochem 167:301–303

    Article  CAS  PubMed  Google Scholar 

  • Mason BS, Slaver HT (1971) A gas chromatographic method for the determination of sugars in food. J Agric Food Chem 19:551–554

    Article  CAS  Google Scholar 

  • Mato I, Huidobro JF, Sánchez MP, Muniategui S, Fernández-Muino MA, Sancho MT (1998) Enzymatic determination of L-malic acid in honey. Food Chem 62:503–508

    Google Scholar 

  • Mato I, Huidobro JF, Simal-Lozano J, Sancho MT (2007) Analytical methods for the determination of organic acids in honey. Crit Rev Anal Chem 36:3–11

    Google Scholar 

  • Mazzoni V, Bradesi P, Tomi F, Casanova J (1997) Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: application to honey. Magn Reson Chem 35:S81–S90

    Article  CAS  Google Scholar 

  • Michalkiewicz A, Biesaga M, Pyrzynska K (2008) Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J Chromatogr A 1187:18–24

    Article  CAS  PubMed  Google Scholar 

  • Mondragón-Cortez P, Ulloa J, Rosas-Ulloa P, Rodríguez-Rodríguez R, Resendiz Vázquez J (2013) Physicochemical characterization of honey from the West region of México. CyTA J Food 11:7–13

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Rodríguez I, Ramil M, Cela R, Sulaiman SA, Gan SH (2014) Assessment of gas chromatography time-of-flight accurate mass spectrometry for identification of volatile and semi-volatile compounds in honey. Talanta 129:505–515

    Article  CAS  PubMed  Google Scholar 

  • Moreira RFA, Maria CAB, Pietroluongo M, Trugo LC (2010) Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chem 121:697–704

    Article  CAS  Google Scholar 

  • Morse RA, Lisk DJ (1980) Elemental analysis of honeys from several nations. Am Bee J 120:522–523

    CAS  Google Scholar 

  • Navarrete M, Casado S, Minelli M, Segura A, Bonetti A, Dinelli G, Fernández A (2015) Direct determination of aliphatic acids in honey by coelectroosmotic capillary zone electrophoresis. J Apic Res 44:65–70

    Google Scholar 

  • Nozal-Nalda MJ, Bernal-Yagüe JL, Diego-Calva JCD, Martín-Gómez MT (2005a) Classifying honeys from the Soria Province of Spain via multivariate analysis. Anal Bioanal Chem 382:311–319

    Article  CAS  PubMed  Google Scholar 

  • Nozal-Nalda MJ, Bernal JL, Toribio L, Alamo M, Diego JC, Tapia J (2005b) The use of carbohydrate profiles and chemometrics in the characterization of natural honeys of identical geographical origin. J Agric Food Chem 53:3095–3100

    Article  CAS  Google Scholar 

  • Ohashi K, Natori S, Kubo T (1999) Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.) Eur J Biochem 265:127–133

    Article  CAS  PubMed  Google Scholar 

  • Ouchemoukh S, Schweitzer P, Bey MB, Djoudad-Kadji H, Louaileche H (2010) HPLC sugar profiles of Algerian honeys. Food Chem 121:561–568

    Article  CAS  Google Scholar 

  • Overton SV, Manura JJ (1994) Flavor and aroma commercial bee honey: a burge-and-trap thermal desorption technique for the identification and quantification of volatiles and semivolatiles in honey. Am Lab 26:45–53

    CAS  Google Scholar 

  • Özbalci B, Boyaci IH, Topcu A, Kadilar C, Tamer U (2013) Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem 136:1444–1452

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska M, Armstrong DW (1994) Evaluation of enantiomeric purity of selected amino acids in honey. Chirality 6:270–276

    Article  CAS  PubMed  Google Scholar 

  • Pažitná A, Janáčová A, Špánik I (2012) The enantiomer distribution of major chiral volatile organic compounds in Slovakian monofloral honeys. J Food Nutr Res 51:236–241

    Google Scholar 

  • Peña RM, Barciela J, Herrero C, García-Martín S (2004) Solid-phase microextraction gas chromatography-mass spectrometry determination of monoterpenes in honeys. J Sep Sci 27:1540–1544

    Article  PubMed  CAS  Google Scholar 

  • Pérez RA, Sánchez-Brunete C, Calvo RM, Tadeo JL (2002) Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry. J Agric Food Chem 50:2633–2637

    Article  PubMed  CAS  Google Scholar 

  • Perna A, Simonetti A, Intaglietta I, Sofo A, Gambacorta E (2012) Metal content of southern Italy honey of different botanical origins and its correlation with polyphenol content and antioxidant activity. Int J Food Sci Technol 47:1909–1917

    Article  CAS  Google Scholar 

  • Persano-Oddo L, Piro R (2004) Main European unifloral honeys: descriptive sheets. Apidologie 35:S38–S81

    Article  Google Scholar 

  • Persano-Oddo L, Baldi E, Accorti M (1990) Diastatic activity in some unifloral honeys. Apidologie 21:17–24

    Article  Google Scholar 

  • Persano-Oddo L, Piazza MG, Pulcini P (1999) Invertase activity in honey. Apidologie 30:57–65

    Article  Google Scholar 

  • Petrov V (1974) Quantitative determination of amino acids in some Australian honeys. J Apic Res 13:61–66

    Article  CAS  Google Scholar 

  • Piasenzotto L, Gracco L, Conte L (2003) Solid phase micro extraction (SPME) applied to honey quality control. J Sci Food Agric 83:1037–1044

    Article  CAS  Google Scholar 

  • Pilz-Güther D, Speer K (2004) Development of a GC method for the simultaneous determination of organic acids in honey. Dtsch Lebensmitt Rundsch 100:84–87

    Google Scholar 

  • Pirini A, Conte LS, Francioso O, Lercker G (1992) Capillary gas chromatographic determination of free amino acids in honey as a means of discrimination between different botanical sources. J High Resolut Chromatogr 15:165–170

    Article  CAS  Google Scholar 

  • Pisani A, Protano G, Riccobono F (2008) Minor and trace elements in different honey types produced in Siena County (Italy). Food Chem 107:1553–1560

    Article  CAS  Google Scholar 

  • Plutowska B, Chmiel T, Dymerski T, Wardencki WA (2011) Headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chem 126:1288–1298

    Article  CAS  Google Scholar 

  • Pohl P (2009) Determination of metal content in honey by atomic absorption and emission spectrometries. Trends Anal Chem 28:117–128

    Article  CAS  Google Scholar 

  • Pohl P, Stecka H, Sergiel I, Jamroz P (2012) Different aspects of the elemental analysis of honey by flame atomic absorption and emission spectrometry: a review. Food Anal Methods 5:737–751

    Article  Google Scholar 

  • Pontes M, Marques JC, Cámara JS (2007) Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase micro-extraction-gas chromatography-quadrupole mass spectrometry. Talanta 74:91–103

    Article  CAS  PubMed  Google Scholar 

  • Pontis JA, Alves Da Costa LAM, Reis Da Silva SJ, Flach A (2014) Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci Technol Campinas 34:69–73

    Article  Google Scholar 

  • Primorac L, Angelkov B, Mandić M, Kenjerić D, Nedeljko M, Flanjak I, Perl Pirički A, Arapceska M (2009) Comparison of the Croatian and Macedonian honeydew honey. J Central Eur Agric 10:263–270

    Google Scholar 

  • Primorac L, Flanjak I, Kenjerić D, Bubalo D, Topolnjak Z (2011) Specific rotation and carbohydrate profile of Croatian unifloral honeys. Czech J Food Sci 29:515–519

    CAS  Google Scholar 

  • Pyrzynska K, Biesaga M (2009) Analysis of phenolic acids and flavonoids in honey. Trends Anal Chem 28:893–902

    Article  CAS  Google Scholar 

  • Qiu PY, Ding HB, Tang YK, Xu RJ (1999) Determination of chemical composition of commercial honey by near-infrared spectroscopy. J Agric Food Chem 47:2760–2765

    Article  CAS  PubMed  Google Scholar 

  • Radovic BS, Careri M, Mangia A, Musci M, Gerboles M, Anklam E (2001) Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey. Food Chem 72:511–520

    Article  CAS  Google Scholar 

  • Rebane R, Herodes K (2010) A sensitive method for free amino acids analysis by liquid chromatography with ultraviolet and mass spectrometric detection using precolumn derivatization with diethyl ethoxymethylenemalonate: application to the honey analysis. Anal Chim Acta 672:79–84

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro ROR, Mársico ET, de Jesús EFO, Carneiro CS, Junior CAC, de Almeida E, Filho VFN (2014) Determination of trace elements in honey from different regions in Rio de Janeiro state (Brazil) by total reflection X-ray fluorescence. J Food Sci 79:T738–T742

    Article  CAS  Google Scholar 

  • Rizelio VM, Gonzaga LV, da Silva GCB, Maltez HF, Oliveira-Costa AC, Fett R (2012) Fast determination of cations in honey by capillary electrophoresis: a possible method for geographic origin discrimination. Talanta 99:450–456

    Article  CAS  Google Scholar 

  • Rodriguez-Otero JL, Paseiro P, Simal J (1990) Intento de caracterización de las mieles naturales de Galicia mediante las fracciones proteicas separadas por electroforesis. Anal Bromatol 42:83–98

    Google Scholar 

  • Rodriguez-Otero J, Paseiro P, Simal J, Cepeda A (1994) Mineral content of the honeys produced in Galicia (north-west Spain). Food Chem 49:169–171

    Article  Google Scholar 

  • Rossano R, Larocca M, Polito T, Perna AM, Padula MC, Martelli G, Riccio P (2012) What are the proteolytic enzymes of honey and what they do tell us? A fingerprint analysis by 2-d zymography of unifloral honeys. PLoS One 7:e49164. doi:10.1371/journal.pone.0049164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Matute AI, Brokl M, Soria AC, Sanz ML, Martínez-Castro I (2010) Gas chromatographic–mass spectrometric characterization of tri- and tetrasaccharides in honey. Food Chem 120:637–642

    Article  CAS  Google Scholar 

  • Sánchez MP, Huidobro JF, Mato I, Muniategui S, Sancho MT (2001) Evolution of invertase activity in honey over two years. J Agric Food Chem 49:416–422

    Article  PubMed  CAS  Google Scholar 

  • Sancho MT, Muniategui S, Huidobro JF, Simal J (1991) Provincial classification of Basque Country (nothern Spain) honeys by their chemical composition. J Apic Res 30:168–172

    Article  CAS  Google Scholar 

  • Sanz S, Pérez C, Herrera A, Sanz M, Juan T (1995) Application of a statistical approach to the classification of honey by geographic origin. J Sci Food Agric 69:135–140

    Article  CAS  Google Scholar 

  • Sanz ML, del Castillo MD, Corzo N, Olano A (2003) 2-Furoylmethyl amino acids and hydroxymethylfurfural as indicators of honey quality. J Agric Food Chem 51:4278–4283

    Article  CAS  PubMed  Google Scholar 

  • Sanz ML, Sanz J, Martinez-Castro I (2004a) Gas chromatographic−mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey. J Chromatogr A 1059:143–148

    Article  CAS  PubMed  Google Scholar 

  • Sanz ML, Gonzalez M, de Lorenzo C, Sanz J, Martinez-Castro I (2004b) Carbohydrate composition and physico chemical properties of artisanal honeys from Madrid (Spain): occurrence of Echium sp honey. J Sci Food Agric 84:1577–1584

    Article  CAS  Google Scholar 

  • Sanz ML, Gonzalez M, de Lorenzo C, Sanz J, Martinez-Castro I (2005) A contribution to the differentiation between nectar honey and honeydew honey. Food Chem 91:313–317

    Article  CAS  Google Scholar 

  • Schepartz AI, Subers MH (1964) The glucose oxidase of honey. Biochim Biophys Acta 85:228–237

    CAS  PubMed  Google Scholar 

  • Senyuva HZ, Gilbert J, Silici S, Charlton A, Dal C, Gurel N, Cimen D (2009) Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. J Agric Food Chem 57:3911–3919

    Article  CAS  PubMed  Google Scholar 

  • Sergiel I, Pohl P, Biesaga M, Mironczyk A (2014) Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles. Food Chem 145:319–326

    Article  CAS  PubMed  Google Scholar 

  • Serra J, Ventura E (1995) Characterization of citrus honey (Citrus Spp.) produced in Spain. J Agric Food Chem 43:2053–2057

    Article  Google Scholar 

  • Serrano S, Espejo R, Villarejo M, Jodral ML (2007) Diastase and invertase activities in Andalusian honeys. Int J Food Sci Technol 42:76–79

    Article  CAS  Google Scholar 

  • Shaw PE (1988) Handbook of sugar separations in foods by HPLC. CRC Press, Boca Raton

    Google Scholar 

  • Silici S (2011) Determination of volatile compounds of pine honeys. Turk J Biol 35:641–645

    CAS  Google Scholar 

  • Silici S, Karaman K (2014) Chemometric approaches for the characterization of Turkish rhododendron and honeydew honeys depending on amino acid composition. J Liq Chromatogr Relat Technol 37:864–877

    Article  CAS  Google Scholar 

  • Silici S, Uluozlu OD, Tuzen M, Soylak M (2016) Honeybee and honey as monitors for heavy metal contamination near the thermal power plants in Mugla, Turkey. Toxicol Ind Health 32:507–516

    Article  CAS  PubMed  Google Scholar 

  • Silva LR, Videira R, Monteiro AP, Valentaõ P, Andrade PB (2009) Honey from Luso region (Portugal): physicochemical characteristics and mineral contents. Microchem J 93:73–77

    Article  CAS  Google Scholar 

  • da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323

    Article  PubMed  CAS  Google Scholar 

  • Simuth J, Bilikova K, Kovacova E, Kuzmova Z, Schroder W (2004) Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-alpha release is a regular component of honey. J Agric Food Chem 52:2154–2158

    Article  CAS  PubMed  Google Scholar 

  • Sing RP, Sing PN (1996) Amino acid and lipid spectra of larvae of honey bee (Apis cerana Fabr) feeding on mustard pollen. Apidologie 27:21–28

    Article  Google Scholar 

  • Smanalieva J, Senge B (2009) Analytical and rheological investigations into selected unifloral German honey. Eur Food Res Technol 229:107–113

    Article  CAS  Google Scholar 

  • Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, Gan SH (2016) Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci Food Saf 15:219–233

    Article  CAS  Google Scholar 

  • Stadelmeier M, Bergner KG (1986) Proteine des bienenhonigs. VII. Eigenschaften und herkunft der honigamylase. Z Lebensm Unters Forsch 182:196–199

    Article  CAS  Google Scholar 

  • Stephens JM, Schlothauer RC, Morris BD, Yang D, Fearnley L, Greenwood DR, Loomes KM (2010) Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem 120:78–86

    Article  CAS  Google Scholar 

  • Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT (2002) Rapid determination of minoritary organic acids in honey by high performance liquid chromatography. J Chromatogr A 955:207–214

    Article  PubMed  Google Scholar 

  • Sweeley CC, Bentley R, Makita M, Wells WW (1963) Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85:2497–2507

    Google Scholar 

  • Tananaki C, Thrasyvoulou A, Giraudel JL, Montury M (2007) Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using Kohonen self organising maps. Food Chem 101:1687–1693

    Article  CAS  Google Scholar 

  • Terrab A, Vega-Pérez JM, Díez MJ, Heredia FJ (2001) Characterisation of northwest Moroccan honyes by gas chromatographic-mass spectrometric analysis of their sugar components. J Sci Food Agric 82:179–185

    Article  CAS  Google Scholar 

  • Terrab A, Hernanz D, Heredia FJ (2004) Inductively coupled plasma optical emission spectrometric determination of minerals in thyme honeys and their contribution to geographical discrimination. J Agric Food Chem 52:3441–3445

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Barberán FA, Martos I, Ferreres F, Radovic BS, Anklam E (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 81:485–496

    Article  Google Scholar 

  • Tourn ML, Lombard A, Belliardo F, Buffa M (1980) Quantitative analysis of carbohydrates and organic acids in honeydew, honey and royal jelly by enzymatic methods. J Apic Res 19:144–146

    Article  CAS  Google Scholar 

  • Trautvetter S, Koelling-Speer I, Speer K (2009) Confirmation of phenolic acids and flavonoids in honeys by UPLC–MS. Apidologie 40:140–150

    Article  CAS  Google Scholar 

  • Truchado P, Ferreres F, Bortolotti L, Sabatini AG, Tomás-Barberán FA (2008) Nectar flavonol rhamnosides are floral markers of acacia (Robinia pseudoacacia) honey. J Agric Food Chem 56:8815–8824

    Article  CAS  PubMed  Google Scholar 

  • Truchado P, Ferreres F, Tomas-Barberan FA (2009) Liquid chromatography-tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey, and their potential as floral origin markers. J Chrom A 1216:7241–7248

    Article  CAS  Google Scholar 

  • Truchado P, Vit P, Ferreres F, Tomas-Barberan F (2011) Liquid chromatography–tandem mass spectrometry analysis allows the simultaneous characterization of C-glycosyl and O-glycosyl flavonoids in stingless bee honeys. J Chromatogr A 1218:7601–7607

    Article  CAS  PubMed  Google Scholar 

  • Truchado P, Vit P, Heard TA, Tomàs-Barberàn FA, Ferreres F (2015) Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia. Rapid Commun Mass Spectrom 29:948–954

    Article  CAS  PubMed  Google Scholar 

  • Truzzi C, Annibaldi A, Illuminati S, Finale C, Scarponi G (2014) Determination of proline in honey: comparison between official methods, optimization and validation of the analytical methodology. Food Chem 150:477–481

    Article  CAS  PubMed  Google Scholar 

  • Tuberoso CIG, Bifulco E, Jerkovic I, Caboni P, Cabras P, Floris I (2009) Methyl syringate: a chemical marker of asphodel (Asphodelus microcarpus salzm. et viv.) monofloral honey. J Agric Food Chem 57:3895–3900

    Article  CAS  PubMed  Google Scholar 

  • Tuberoso CIG, Bifulco E, Caboni P, Cottiglia F, Cabras P, Floris I (2010) Floral markers of strawberry tree (Arbutus unedo L.) honey. J Agric Food Chem 58(1):384389

    Google Scholar 

  • Val A, Huidobro JF, Sánchez MP, Muniategui S, Fernández-Muiño MA, Sancho MT (1998) Enzymatic determination of galactose and lactose in honey. J Agric Food Chem 46:1381–1385

    Article  CAS  Google Scholar 

  • Valachová I, Bučeková M, Majtán J (2016) Quantification of bee-derived peptide defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control. Czech J Food Sci 34:233–243

    Article  Google Scholar 

  • Vanhanen LP, Emmertz A, Savage GP (2011) Mineral analysis of mono-floral New Zealand honey. Food Chem 128:236–240

    Article  CAS  PubMed  Google Scholar 

  • Viñas P, Balsalobre N, López-Erroz C, Hernández-Córdoba M (2004) Liquid chromatographic analysis of riboflavin vitamers in foods using fluorescence detection. J Agric Food Chem 52:1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Wabaidur SM, Ahmed YBH, Alothman ZA, Obbed MS, Al-Harbi NM, Al-Turki TM (2015) Ultra high performance liquid-chromatography with mass spectrometry method for the simultaneous determination of phenolic constituents in honey from various floral sources using multiwalled carbon nanotubes as extraction sorbents. J Separ Sci 38:2597–2606

    Article  CAS  Google Scholar 

  • Wang J, Kliks MM, Qu W, Jun S, Shi G, Li QX (2009) Rapid determination of the geographical origin of honey based on protein fingerprinting and barcoding using MALDI TOF MS. J Agric Food Chem 57:10081–10088

    Article  CAS  PubMed  Google Scholar 

  • Wardencki W, Chmiel T, Dymerski T, Biernacka P, Plutowska B (2009) Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecol Chem Eng 16:287–300

    CAS  Google Scholar 

  • Waś E, Rybak-Chmielewska H, Szczęsna T, Kachaniuk K, Teper D (2011) Characteristics of Polish unifloral honeys. III. Heather honey (Calluna vulgaris L.) J Apic Sci 55:129–137

    Google Scholar 

  • Wehling M, von der Ohe K, von der Ohe W (2006) Problemhonig robinie: Zu wenig invertase-aktivitä. Deutsch Bienen J 13:18–19

    Google Scholar 

  • Weston RJ (2000) The contribution of catalase and other natural products to the antibacterial activity of honey: a review. Food Chem 71:235–239

    Article  CAS  Google Scholar 

  • White JW (1975) Physical characteristics of honey. In: Crane E (ed) From honey: a comprehensive survey. Heinemmann, London, pp 207–239

    Google Scholar 

  • White JW Jr (1978) Honey. In: Advances in food research. Academic, New York, pp 287–364

    Google Scholar 

  • White JW, Kushnir I (1967) The enzymes of honey: examination by ion-exchange chromatography, gel filtration, and starch-gel electrophoresis. J Apicult Res 6:69–89

    Article  Google Scholar 

  • White JW, Schepartz AI, Subers MH (1963) Identification of inhibine, antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta 73:57–70

    Article  CAS  PubMed  Google Scholar 

  • Wilkins AL, Lu Y, Tan S-T (1995) Extractives from New Zealand honeys. 5. Aliphatic dicarboxylic acids in New Zealand rewerewa (Knightea excelsa) honey. J Agric Food Chem 43:3021–3025

    Article  CAS  Google Scholar 

  • Won SA, Li C, Kim J, Rhee H (2009) Immunological characterization of honey major protein and its application. Food Chem 113:1334–1338

    Article  CAS  Google Scholar 

  • Wongchawalit J, Yamamoto T, Nakai H, Kim Y, Sato N, Nishimoto M, Okuyama M, Mori H, Saji O, Chanchao C, Wongsiri S, Surarit R, Svasti J, Seiya C, Kimura A (2006) Purification and characterization of α-glucosidase I from Japanese honeybee (Apis cerana japonica) and molecular cloning of its cDNA. Biosci Biotechnol Biochem 70:2889–2898

    Article  CAS  PubMed  Google Scholar 

  • Wootton M, Edwards RA, Faraji-Haremi R (1978) Effect of accelerated storage conditions on the chemical composition and properties of Australian honeys. 3. Changes in volatile components. J Apic Res 17:167–172

    Article  CAS  Google Scholar 

  • Wunnachit W, Jenner F, Sedgley M (1992) Floral and extrafloral nectar production in Anacardium occidentale l. (anacardiaceae): an andromonoecious species. Int J Plant Sci 153:413–420

    Article  Google Scholar 

  • Xu J-J, An M, Yang R, Cao J, Ye L-H, Peng L-Q (2016) Trace amounts of poly-cyclodextrin wrapped carbon nanotubes for the microextraction of flavonoids in honey samples by capillary electrophoresis with light-emitting diode induced fluorescence detection. Electrophoresis 37:1891–1901

    Article  CAS  PubMed  Google Scholar 

  • Zamora MC, Chirife J (2006) Determination of water activity change due to crystallization in honeys from Argentina. Food Control 17:59–64

    Article  CAS  Google Scholar 

  • Zhang XH, Wu HL, Wang JY, Tu DZ, Kang C, Zhao J, Chen Y, Miu XX, Yu RQ (2013) Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm. Food Chem 138:62–69

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Wintersteen CL, Cadwallader KR (2002) Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. J Agric Food Chem 50:2016–2021

    Article  CAS  PubMed  Google Scholar 

  • Zieliński L, Deja S, Jasicka-Misiak I, Kafarski P (2014) Chemometrics as a tool of origin determination of Polish monofloral and multifloral honeys. J Agric Food Chem 62:2973–2981

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. González-Paramás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Santos-Buelga, C., González-Paramás, A.M. (2017). Chemical Composition of Honey. In: Alvarez-Suarez, J. (eds) Bee Products - Chemical and Biological Properties. Springer, Cham. https://doi.org/10.1007/978-3-319-59689-1_3

Download citation

Publish with us

Policies and ethics