Skip to main content

Intrinsic Regulatory and Effector Systems

  • Chapter
  • First Online:
Biomechanics of the Human Stomach
  • 605 Accesses

Abstract

After the colonization of the gastrointestinal tract by NCSCs is complete, a complex network of neuronal and glial cells arranged in interconnected ganglia is generated. Different subtypes of ganglionic cells, based on a combination of their morphology, neurochemical coding, electrophysiological responses, connections, projections and function are identified in the enteric nervous system. Morphofunctional and projectile classification reflects on intrinsic primary afferent, ascending (orally)/descending (aborally) inter-, motor, intestinofugal, secretomotor and vasomotor neurons. By contrast electrophysiological taxonomy is based mainly on firing pattern characteristics. Thus S–type neurons exhibit brief action potentials and lack a prolonged slow after-hyperpolarization phase, whilst AH–type neurons show prominent long lasting (up to 20 s) hyperpolarization dynamics. The neuro-chemo-functional division into cholinergic, nitrergic, serotonergic, etc becomes superfluous because neurons co-localise and co-release multiple neurotransmitters and simultaneously exert excitatory and/or inhibitory effects.

The mathematics is not there till we put it there.

Arthur Eddington

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrete JS, Shepard RB, Halpern NB, Jimenez H, Piantodosi S (1982) Effects of various operations on the electrical activity of the human stomach recorded during the postoperative recovery period. Ann Surg 195(5):662–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM (2013) Distribution and Ca2+ signaling of fibroblast-like (PDGFRα+) cells in the murine gastric fundus. J Physiol 591:6193–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielefeldt K (1999) Molecular diversity of voltage-sensitive calcium channels in smooth muscle cells. J Lab Clin Med 133:469–477

    Article  CAS  PubMed  Google Scholar 

  • Fitzhugh R (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys 17:257–278

    Article  Google Scholar 

  • Gerstner W, Kistler WI (2002) Spiking neuron models. Single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Graham B, van Ooyen A (2006) Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neurosci 7(Suppl 1):S9. doi:10.1186/1471-2202-7-S1-S9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MB (2003) The enteric nervous system I: Organization and classification. Basic Clin Pharm Toxicol 92(3):105–113. doi:10.1034/j.1600-0773.2003.t01-1-920301.x

    Article  CAS  Google Scholar 

  • Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT (2011) Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 3:1–22

    Article  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–544

    Article  CAS  Google Scholar 

  • Holden AV, Yoda M (1981) Ionic channel density of excitable membrane may act as a bifurcation parameter. Biol Cyber 42:29–38

    Article  CAS  Google Scholar 

  • Huizinga JD, Golden CM, Zhu Y, White EJ (2004) Ion channels in interstitial cells of Cajal as targets forneurotransmitter action. Neurogastroenterol Motil 16(Suppl 1):106–111

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neur Netw 14:1569–1572

    Article  CAS  Google Scholar 

  • Kepler TB, Marder E (1993) Spike initiation and propagation on axons with slow inward currents. Biol Cyber 68:209–214

    Article  CAS  Google Scholar 

  • Kito Y (2011) The functional role of intrasmuscular interstitial cells of Cajal in the stomach. J Smooth Muscle Res 47(2):47–53

    Article  PubMed  Google Scholar 

  • Manneschi LI, Pacini S, Corsani L, Bechi P, Faussone-Pellegrini MS (2004) Interstitial cells of Cajal in the human stomach: distribution and relationship with enteric innervation. Histol Histopathol 19:1153–1164

    Google Scholar 

  • Mitsui R, Komuro T (2002) Direct and indirect innervation of smooth muscle cells of rat stomach, with special reference to the interstitial cells of Cajal. Cell Tissue Res 309(2):219–227

    Article  PubMed  Google Scholar 

  • Miura RM (2002) Analysis of excitable cell models. J Comput Appl Math 144:29–47

    Article  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    Article  CAS  PubMed  Google Scholar 

  • Rich A, Farrugia G, Sarr MG, Szurszewski J (1998) Calcium currents in interstitial cells from human jejunum. Gastroenterology 114:A826

    Article  Google Scholar 

  • Sanders KM, Ward SM, Koh SD (2014) Interstitial cells: regulators of smooth muscle function. Physiol Rev 94:859–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schierwagen A (2009) Mathematical and computational modeling of neurons and neuronal ensembles. In: Moreno-Diaz R, Pichler F, Quesada-Arencibia A (eds) EUROCAST, LNS 5717. Springer, Berlin, pp 159–166

    Google Scholar 

  • Stoddard CJ, Waterfall WE, Brown BH, Duthie HL (1973) The effects of varying the extent of the vagotomy on the myoelectrical and motor activity of the stomach. Gut 14:657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoddard CJ, Waterfall WE, Brown BH, Duthie HL (1975) The immediate and delayed effects of differernt types of vagotomy on human gastric myoelectrical activity. Gut 16:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol Gastroint Liv Physiol 285:G1111–G1121

    Article  CAS  Google Scholar 

  • Tian L, McClafferty H, Chen L, Shipston MJ (2008) Reversible tyrosine protein phosphorylation regulates large conductance voltage- and calcium-activated potassium channels via cortactin. J Biol Chem 283:3076–3076

    Google Scholar 

  • Wilson HR (1999) Spikes, decisions, and actions: the dynamical foundations of neuroscience. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Miftahof, R.N. (2017). Intrinsic Regulatory and Effector Systems. In: Biomechanics of the Human Stomach. Springer, Cham. https://doi.org/10.1007/978-3-319-59677-8_8

Download citation

Publish with us

Policies and ethics