Skip to main content

Signal Transduction Mechanisms

  • Chapter
  • First Online:
Biomechanics of the Human Stomach
  • 601 Accesses

Abstract

“Little Brain”—the enteric nervous system (ENS)—of the human stomach is comprised of a large number of neurons, 46,260 ± 3.829 (neurons/cm2) (Mandić et al. 2016). Formed by a population of vagal and truncal derived neural crest multipotent stem cells (NCSCs), neurons colonize the organ in a rostral-caudal progression. They group together to form morphofunctional units—ganglia. Ganglia are diverse in terms of their number, morphology, size, and the number of neurons they contain. The density of ganglia distribution is not constant, i.e. it is relatively sparse in the fundus of the stomach and more dense in the antrum and pylorus. Quantitative analysis reveals that an average ganglion is formed of 3.4–5.4 neurons that are spread over a surface area of (1.8 ± 0.3) × 102 mm2 (Knowles et al. 2011). Most of the cells possess two major morphological forms—Dogiel type I and II—uniaxonal and multiaxonal, respectively, although bipolar, ovoid, polygonal, or stellar shapes have also been described. The actual size of matured neurons ranges within (29.6 ± 2.25) × 10 μm2 (Mandić et al. 2016).

The enchanting charms of this sublime science reveal only to those who have courage to go deeply into it.s

Carl Friedrich Gauss

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anlauf M, Schafer MK, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Compar Neurol 459:90–111

    Article  CAS  Google Scholar 

  • Belai A, Burnstock G (2000) Pattern of distribution and co-localization of NOS and ATP in the myenteric plexus of human fetal stomach and intestine. Neuroreport 11:5–8

    Article  CAS  PubMed  Google Scholar 

  • Blaugrund E, Pham TD, Tennyson VM, Lo L, Sommer L, Anderson DJ, Gershon MD (1996) Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 122:309–320

    CAS  PubMed  Google Scholar 

  • Burnstock J (2004) Cotransmission. Curr Opin Pharmac 4:47–52

    Article  CAS  Google Scholar 

  • Cai Y-L, Zhang M-H, Huang X, Jiang J-Z, Piao L-H, Jin Z, W-X X (2015) CNP-pGC-cGMP-PDE3-cAMP signal pathway upregulated in gastric smooth muscle of diabetic rats. Gastroenter Res Prac 2015:1–9

    Article  Google Scholar 

  • Cha S (1968) A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem 25:820–825

    Google Scholar 

  • Chalazonitis A, Pham TD, Li Z, Roman D, Guha U, Gomes W, Kan L, Kessler JA, Gershon MD (2008) Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Compar Neurol 509:474–492

    Article  CAS  Google Scholar 

  • Cho SH, Park H, Kim JH, Ryu YH, Lee SI, Conklin JL (2006) Effect of sildenafil on gastric emptying in healthy adults. J Gastroenter Hepat 21(1 Pt 2):222–226

    Article  CAS  Google Scholar 

  • Epperson A, Halton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B (2000) Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol 279:C529–C539

    CAS  Google Scholar 

  • Gariepy CE (2001) Intestinal motility disorders and development of the enteric nervous system. Ped Res 49(5):605–613

    Article  CAS  Google Scholar 

  • Huber A, Trudrung P, Storr M, Franck H, Schusdziarra V, Ruth P, Allescher HD (1998) Protein kinase G expression in the small intestine and functional importance for smooth muscle relaxation. Am J Physiol Gastroint Liver Physiol 275(4):G629–G637

    CAS  Google Scholar 

  • Iino S, Ward SM, Sanders KM (2004) Interstitial cells of Cajal are functionally innervated by excitatory motor neurons in the murine intestine. J Physiol 556:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TW, Koh SD, Ordog T, Ward SM, Sanders KM (2003) Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J Physiol 546:415–425

    Article  CAS  PubMed  Google Scholar 

  • King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme catalyzed reactions. J Phys Chem 60:1375–1378

    Article  CAS  Google Scholar 

  • Kito Y (2011) The functional role of intrasmuscular interstitial cells of Cajal in the stomach. J Sm Musc Res 47(2):47–53

    Article  Google Scholar 

  • Knowles CH, Veress B, Kapur RP, Wedel T, Farruga G, Vanderwinden JM, Geboes K, Smith VV, Martin JE, Lindberg G, Milla PJ, De Giorgio R (2011) Quantitation of cellular components of the enteric nervous system in the normal human gastrointestinal tract-report on behalf of the Gastro 2009 International Working Group. Neurogastroent Mot 23:115–124

    Article  CAS  Google Scholar 

  • Kraichely RE, Farrugi G (2007) Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroent Mot 19:245–252

    Article  CAS  Google Scholar 

  • Lavin ST, Southwell BR, Murphy R, Jenkinson KM, Furness JB (1998) Activation of neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small intestine by substance P. Histochem Cell Biol 110:263–271

    Article  CAS  PubMed  Google Scholar 

  • Lecci A, Santicioli P, Maggi CA (2002) Pharmacology of transmission to gastrointestinal muscle. Curr Opin Pharmacol 2:630–641

    Article  CAS  PubMed  Google Scholar 

  • Mandić P, Filipović T, Gašić M, Djukić-Macut N, Filipović M, Bogosavljević I (2016) Quantitative morphometric analysis of the myenteric nervous plexus ganglion structures along the human digestive tract. Vojnosanitetski Pregled March:46–53

    Google Scholar 

  • Merighi A (2002) Costorage and coexistence of neuropeptides in the mammalian CNS. Prog Neurobiol 66:161–190

    Article  CAS  PubMed  Google Scholar 

  • Metzger M (2010) Neurogenesis of the enteric nervous system. Arch Ital Biol 148:73–83

    PubMed  Google Scholar 

  • Miftahof RN, Nam HG, Wingate DL (2009) Mathematical modeling and simulation in enteric neurobiology. World Scientific Publishing, Singapore

    Book  Google Scholar 

  • Miller SM, Reed D, Sarr MG, Farrugia G, Szurszewski JH (2001) Haem oxygenase in enteric nervous system of human stomach and jejunum and co-localization with nitric oxide synthase. Neurogastroent Mot 13:121–131

    Article  CAS  Google Scholar 

  • Murthy KS, Zhou H, Makhlouf G (2001) PKA-dependent activation of PDE3A and PDE4 and inhibition of adenylyl cyclase V/VI in smooth muscle. Am J Physiol 282:C508–C517

    Article  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24(3):146–154

    Article  CAS  PubMed  Google Scholar 

  • Pimont S, Bruley des Varannes S, Le Neel JC, Aubert P, Galmiche JP, Neunlist M (2003) Neurochemical coding of myenteric neurones in the human gastric fundus. Neurogastroent Mot 15:655–662

    Article  CAS  Google Scholar 

  • Sanders KM, Ward SM, Koh SD (2014) Interstitial cells: regulators of smooth muscle function. Physiol Rev 94:859–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasselli V, Pachnis V, Burns A (2012) The enteric nervous system. Dev Biol 366:64–73

    Article  CAS  PubMed  Google Scholar 

  • Southwell BR, Woodman HL, Murphy R, Royal SJ, Furness JB (1996) Characterisation of substance P-induced endocytosis of NK1 receptors on enteric neurons. Histochem Cell Biol 106:563–571

    Article  CAS  PubMed  Google Scholar 

  • Teschemacher AG, Christopher DJ (2008) Cotransmission in the autonomic nervous system. Exp Physiol 94(1):18–19

    Article  Google Scholar 

  • Trudeau L-E, Gutiérrez R (2007) On cotransmission & neurotransmitter phenotype plasticity. Mol Inter 7:138–146

    Article  CAS  Google Scholar 

  • Vannucchi MGGR, Faussone-Pellegrini MS (1997) NK1 receptor expression in the interstitial cells of Cajal and neurons and tachykinins distribution in rat ileum during development. J Comp Neurol 383:153–162

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Ward SM, Gerthoffer WT, Sanders KM (2003) PKC-epsilon translocation in enteric neurons and interstitial cells of Cajal in response to muscarinic stimulation. Am J Physiol Gastroint Liver Physiol 285:G593–G601

    Article  CAS  Google Scholar 

  • Wang H, Hughes I, Planer W, Parsadanian A, Grider JR, Vohra BP, Keller-Peck C, Heuckeroth RO (2010) The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function. J Neurosci 30:1523–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata M, Sanes JR, Weiner JA (2003) Synaptic adhesion molecules. Curr Opin Cell Biol 15:621–632

    Article  CAS  PubMed  Google Scholar 

  • Young HM (1999) Embryological origin of interstitial cells of Cajal. Microsc Res Tech 47(4):303–308

    Article  CAS  PubMed  Google Scholar 

  • Zhang R-X, Wang XY, Chen D, Huizinga JD (2011) Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach. Neurogastroent Mot 23:e356–e371

    Article  Google Scholar 

  • Zhu MH, Sung IK, Zheng H, Sung TS, Britton FC, O’Driscoll K, Koh SD, Sanders KM (2011) Muscarinic activation of Ca2+-activated Cl current in interstitial cells of Cajal. J Physiol 589(Pt18):4565–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Miftahof, R.N. (2017). Signal Transduction Mechanisms. In: Biomechanics of the Human Stomach. Springer, Cham. https://doi.org/10.1007/978-3-319-59677-8_7

Download citation

Publish with us

Policies and ethics